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Coordinating Locomotion and Manipulation of a Mobile Manipulator

Abstract
A mobile manipulator in this study is a manipulator mounted on a mobile platform. Assuming the end point
of the manipulator is guided, e.g., by a human operator to follow an arbitrary trajectory, it is desirable that the
mobile platform is able to move as to position the manipulator in certain preferred configurations. Since the
motion of the manipulator is unknown a priori, the platform has to use the measured joint position
information of the manipulator for motion planning. This paper presents a planning and control algorithm for
the platform so that the manipulator is always positioned at the preferred configurations measured by its
manipulability. Simulation results are presented to illustrate the efficacy of the algorithm. The use of the
resulting algorithm in a number of applications is also discussed.
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ABSTRACT 

A mobile manipulator in this study is a manipulator 
mounted on a mobile platform. Assuining the end 
point of the manipulator is guided , e.g., by a human 
operator to follow an arbitrary trajectory, it is desir- 
able that the mobile platform is able to move as to 
position the manipulator in certain preferred configu- 
rations. Since the motion of the manipulator is un- 
known a priori, the platform has to  use the measured 
joint position information of the manipulator for mo- 
tion planning. This paper presents a planning and con- 
trol algorithm for the platfornl so that the manipula- 
tor is always positioned at the preferred configurations 
measured by its manipulability. Simulation results are 
presented to illustrate the efficacy of t,he algorithm. 
The use of the resulting algorithm in a number of ap- 
plications is also discussed. 

1 Introduction 

When a human writes across a board, he posit,ions his 
arm in a comfortable writing configuration by mov- 
ing his body rather than reaching out his arm. Also 
when humans transport a large and/or heavy object 
coorperatively, they tend to prefer certain configura- 
tions depending on various factors, e.g., the shape and 
the weight of the object, the transportation velocity, 
the number of people iilvolved in a task, and so on. 
Therefore when a mobile illanipulator perforins a ma- 
nipulation task, it is desirable to  bring the manipulator 
into certain preferred configurations by appropriately 
planning the motion of the mobile platform. If the 
trajectory of the manipulator end point in a fixed co- 
ordinate system (world coordinate system) is known a 
priori, then the motion of the mobile platform can be 
planned accordingly. However, if the inotioii of the ma- 

nipulator end point is unknown a priori, e.g., driven by 
a visual sensor or guided by a human operator, then the 
path planning has to  be made locally and in real time 
rather than globally and off-line. This paper presents a 
planning and control algorithm for the platform in the 
latter case, which takes the measured joint displace- 
ment of the maiiipulator as the input for inotion plan- 
ning, and controls the platform in order to bring the 
manipulator into a preferred operating region. While 
this region can be selected based on any meaningful 
criterion, the inanipulability measure [I] is utilized in 
this study. By using this algorithm, the mobile plat.- 
form will be able to  "understand the intention of its 
inanipulator and respond accordingly." 

This control algorithin has a number of iminidiate 
applications. First, a human operator can easily move 
around the mobile manipulator by "dragging" the end 
point of the manipulator while the manipulator is in 
the free mode (compensating the gravity only). Sec- 
ond, if the manipulator is force-controlled, the mobile 
manipulator will be able to  push against and follow 
an external moving surface. Third, when two mobile 
manipulators transport a large object with one being 
the illaster and the other being slave, this algorithm 
can be used to  control the slave mobile manip~lat~or to 
support the object and follow the motion of the mas- 
ter, resulting in a cooperative control algorithm for two 
mobile manipulators. 

Altl~ough there has been a vast amount of research 
effort on mobile platforms (commonly referred to as 
mobile robots) in the literature, the study on mobile 
inanip~lat~ors is very limited. Joshi and Desrochers 
considered a two link manipulator on a moving plat- 
form subject to  random disturbances in its orientation 
[2]. Wien studied dynamic coupling between a planar 
vehicle and a one-link manipulator on the vehicle [3]. 
Dubowsky, Gu,  and Deck derived the dynamic equa- 



tions of a fully spatial mobile manipulator with link 
flexibility [4]. Recently, Hootsmans proposed a mobile 
manipulator control algorithm (the Mobile Manipula- 
tor Jacobian Transpose Algorithm) for a dyilamically 
coupled mobile manipulator [5]. He showed that with 
the algorithm the manipulator could successfully com- 
pensate a trajectory error caused by vehicle's passive 
suspension with the help of limited sensory information 
from mobile vehicle. 

What makes the coordination problem of locomo- 
tion and manipulation a difficult one is twofold. First, 
a manipulator and a mobile platform, in general, have 
different dynamic characteristics, namely, a mobile 
platform has slower dynamic response than a manipu- 
lator. Second, a wheeled mobile platform is subject to  
nonholonomic constraints while a manipulator is usu- 
ally unconstrained. These two issues must be taken 
into consideration in developing a planning and con- 
trol algorithm. 

Dynamic modeling of mechanical systenw with non- 
holonomic constraints is richly documented by work 
ranging from Neimark and Fufaev's comprehensive 
book [GI t o  more recent developments (see for example, 
[7]). However, the literature on control properties of 
such systems is sparse [8]. The interest in control of 
nonholonomic systems has been stimulated by t.he re- 
cent research in robotics. The dynamics of a wheeled 
mobile robot is nonholonoinic [9], and so is a multi-arm 
system manipulating an object through the .ivhole arm 
manipulation [lo]. 

Bloch and McClamroch [8] first deilloilstrated that 
a nonholonomic system cannot be feedback stabilized 
to  a single equilibrium point by a smooth feedback. 
In a follow-up paper [ll], they showed that the sys- 
tem is small-time locally controllable. Campion e t  a1 
[12] showed that the system is coiltrollable regardless 
of the structure of nonholonomic constraiiits. h'lotion 
planning of mobile robots has been an active topic in 
robotics in the past several years [13, 14, 9, 15, 161. 
Nevertheless, much less is known about the dynamic 
control of mobile robots with nonholonomic constraints 
and the developments in this area are very recent 
[17, 18, 191. 

In this paper, we first present the theoretic formula;. 
tion of a general nonholonomic system. Nest we apply 
the formulation to  the specific mobile platform used for 
the experiments in order to derive the dynamic equa- 
tions. Then we describe the path planning algorithm 
and show the simulation results, followed by conclud- 
ing remark. 

2 Nonholonomic Systems 

2.1 Dynamic Equations of Motion 

Consider a mechanical system with n generalized co- 
ordinates q subject to m bilateral constraints whose 
equations of motion are described by 

where M(q) is the n x n inertia matrix, V(q, q) is the 
vector of position and velocity dependent forces, E(y) 
is the n x r input transformatioll matrix1, T is the 1.- 
dimensional input vector, A(q) is the m x n Jacobian 
matrix, and X is the vector of constraint forces. The 
m constraint equations of the mechanical system can 
be written in the form 

If a constraiilt equation is in the form Ci(y) = 0, or 
call be integrated into this form, it is a l~olonomic con- 
straint. Otherwise it is a kinematic (not geometric) 
constraint and is termed nonholonomic. 

We assume that we have L holonomic and 712- L now 
holonomic independent constraints, all of which can be 
written in the form of 

Let s ~ ( ~ ) ,  . . ., s,-,(q) be a set of smooth and linearly 
independent vector fields in the null space of A(y), z.e., 

-4(q)si(q) = 0 i =  1 , . . . ,  n-m. .  

Let S(q) be the full rank matrix made up of these 
vectors 

S(q) = is1 (9) . . . ~n-m(q)l  (4)  
and let A be the distribution spanned by these vector 
fields 

A = span{sl(q), . . . 3 sn-na(q) > 
It. follows that q E 4. A may or may not be involutive. 
For that reason, we let A* be the smallest involut.ive 
distributioil containing A. It is clear that d im(4 )  5 
dim(A*). There are three possible cases (as observed 
by Campion, e t  al. in [12]). First, if L = m, that is. 
all the const,raints are holonomic, then A is involutive 
itself. Second, if k = 0, that is, all the coilstraints are 
nonholonomic, then A" spans the entire space. Finally, 
if 0 < k < nz, the k constraints are integrable and 
L components of the generalized coordinates may he 
eliminated from the motion equations. In this case, 
dim(A*) = n - k. 

l E ( q )  is an identity matrix in most cases. However, if the 
generalized coordinates are chosen to be some variables other 
than the joint variables, or if there are passive joints without 
actuators, it is not an identity matrix. 



2.2 State Space Representation 

We now consider the mechanical system given by (1).  
(3) Since the constrained velocity is always in the null 
space of A(q), it is possible to  define n - m velocities 
v(t)  = [vl v2 . . . vn-m] such that  

These velocities need not be integrable. 
Differentiating Equation (5), substituting the ex- 

pression for q into ( I ) ,  and premultiplying by S T ,  we 
have 

Tlleorem 3 S y s t e m  (10)  i s  no t  input-s tate  l ineariz- 
able by  a s tate  feedback if  a t  least o n e  of  the  constraints  
i s  nonho lonomic .  

Proof: T h e  system has to  satisfy two conditions for 
input-state linealization: the strong accessibility con- 
dition and the involutivity condition [20]. It is shown 
below that  the involutivity condition is not satisfied. 

Define a sequence of distributions 

Then the involutivity condition requires that the dis- 
tributions Dl,  D2, . . . , Dzn-, are all involutive. Note 
that  the dimension of the state variable is 2n - m. 

by noting that  
A(q)q = 0. 

Dl = span{g} is involutive since g is constant. Next 

(7) we compute 

Using the state space variable z = [qT vTIT, we 
have 

where f 2  = (sT M S ) - ' ( - S ~ M S V  - PV). Assuming 
that  the number of actuator inputs is greater or equal 
to  the number of the degrees of freedom of the mechan- 
ical system (r > n - m ) ,  and ( S T h 4 S ) - ' b 3 ~  has ra.nk 
n - m,  we may apply the following nonlinear feedback 

where the superscript + denotes the generalized inatrix 
inverse. The  state equation simplifies to  the forill 

x = f ( x )  + g ( x ) u  ( 1 0 )  

S ( Y )  where f ( r ) =  [ ' 1 ,  g (x )= [ 1 .  
2.3 Control Properties 

The following two properties of the system ( 1 0 )  have 
been established in [12,  8, 111 for the specia.1 case in 
which all constraints are nonholonomic. 

Theorem 1 T h e  nonho lonomic  s y s t e m  (10)  i s  con- 
troldable. 

Theorem 2 T h e  equ i l ibnum poi111 x = 0 of the  n o n -  
ho lonomic  s y s t e m  ( 1 0 )  can  be m a d e  Lagrange s fable ,  
but can  n o t  be m a d e  asyinptotically stable by a smooth  
s tate  feedback. 

In the rest of this section, we discuss the more gen- 
eral case in which Equation (3) consists of both holo- 
nomic and nonholonomic constraints. 

Since the distribution A spanned by the columns 
of S(q) is not involutive, the distribution D2 = 
span{g, L g )  is not involutive. Therefore, the system 
is not input-stmate linearizable. 

Al t l~oug l~  a system with nonholonomic constraints is 
not input-state linearizable, it is input-output lineariz- 
able if a proper set of output equations are chosen. 
Consider the position control of the system, i.e., the 
output equations are functioils of position state vari- 
able q only. Since the number of the degrees of freedoill 
of the system is inst,a.ntaneously n- m,, we may have at, 
most n - 112 independent position outputs equations. 

The  necessary and sufficient condition for input-output 
linearization is that  the decoupling matrix has full rank 
1201. With the output equation ( l l ) ,  the decoupling 
matrix @ ( x )  for the system is the ( n  - ~ n )  x ( n  - m )  
matrix 

@ ( Y )  = Jh(q)S(q) ( I 2 )  

where Jh = ah is the (n - m )  x n Jacobian matrix. 
aq 

@ ( z )  is nonsingular if the rows of Jh are independent 
of the rows of A(q) .  

To characterize the zero dynamics and achieve input- 
output linearization, we introduce a new sta.te space 
variable r defined as follows 

(13)  
where & ( q )  is an in-dimensional function such that 
[J: J:] llas full rank. It is easy t o  verify that T ( z )  is 



indeed a diffeomorphism and thus a valid state space YC Desired Trajectory 
transformation. The system under the new state vari- 
able z is characterized by 

il = 
d h  . 
-q= 2 2  ( 1 4 )  
89 

( 1 5 )  i2 = ~ ( Y ) Y  + @(Y)u  

i 3  = J i S v  = J ~ s ( J ~ s ) - ' z ~  (16 )  

Utilizing the following state feedback 
+ X  

we achieve input-output linearization as well as input- 
output decoupling by noting the observable part of the 
system 

The unobservable zero dynamics of t8he system is (ob- 
tained by substituting zl = U and 22 = 0) 

which is clearly Lagraiige stable but not asyiiipt,otically 
stable. 

3 Mobile Platform 

3.1 Constraint Equations 

In this subsection, we derive the constraint equations 
for a LABMATE2 mobile pla.t,form. The platform has 
two driving wheels (the center ones) and four passive 
supporting wheels (the corner ones). The two driving 
wheels are independently driven by two DC motors, 
respectively. The following notations will be used in 
the derivation of the constraint equat,ions and dynamic 
equations (see Figure 1). 

Figure 1: Schematic of the mobile manipulator. 

DC motors; 
m,: the mass of each driving wheel plus the 

rotor of its motor; 
I,: the moment of inertia of the platform 

without the driving wheels and the 
rotors of the motors about a vertical 
axis through Po: 

I,: the moment of inertia of each wheel 
and the motor rotor about the wheel axis; 

I,: the moment of inertia of each wheel and 
the motor rotor about a wheel diameter. 

There are three constraints. The first one is that 
the platform must move in the direction of the axis of 
symmetry, i .e.,  

6, cos Q) - i, sin Q) - d$ = O (19 )  

where (x,, y,) is the coordina,tes of the center of mass 
PC in the world coordinate system, and the Q) is the 
heading angle of the platform measured from the S- 
axis of the world coordinates. The other two con- 
st,raints are the rolling constraints, i .e . ,  the driving 
wheels do not slip. 

Po: the intersection of the axis of symmetry ic cos Q) + 6, sin 4 + b$ = r i ,  (20 )  

with the driving wheel axis; i c o  4 + y sin 4 - 4 = ( 2 1 )  
PC:  the center of mass of the platform; 
Pb:  the location of the manipulator on the platform; where f l y  and 01 are the angular displacement of the 
P,: the reference point to be followed by right and left wheels, respectively. 

the mobile platform; Let q = (x,, y,, 4, B,., B 1 ) ,  the three constraints can 
d:  the distance from Po to PC; be written in t,he form of 
b: the distance between t,he driving wheels 

and the axis of symmet-ry; A ( q ) q  = 0 
r :  the radius of each driving wheel; 
m,: the mass of the platform without the where 

driving wheels and the rot.ors of the - s in4  C O S ~  -d 0 

0 ] 'LABMATE is a trademark of Transitions Research - COSQ) -sin 4 -b 0 (22) 
Corporation. -cosQ) - s in4  b 0 r 



I t  is straightforward to verify that the follorving ma- platform with the Lagrange multipliers X I ,  X 2 ,  and A 3  

trix are giver1 by 

S(Y) = [ s~(Y) ,  sz(q)l = 

I 
c(b cos 4 - d sin 4) c(b cos 4 + d sill 4) 
c(b sin 4 + d cos 4) c(b sin 4 - d cos 4) 

C - C 

1 0 
0 1 1 

satisfies A(q)S(q) = 0, where the constant c = 6. 
Computing the Lie bracket of s l (q)  and s2(q) we obt,a.ln 

-rcsin 4 
rc  cos 4 

0 
0 
0 

which is not in the distribution A spanned by sl(q) and 
s 2 ( q )  Therefore, at least one of the  constraint,^ is non- 
holonomic. We continue to compute t,he Lie bracket of 
sl(q) and s ~ ( Y )  

which is linearly independent of s l (q) ,  sz(q), and 
s3(q). However, the distribution spanned by 

m?, - m,d($sin 4 + d2 cos 4)- 
X1 sin 4 - (A2 + X3) cos 4 = 0 (26) 

my, - m,d($ cos 4 - $'sin 4)+ 
X1 cos 4 - (A2 + X 3 )  sin 4 = 0 (27) 

-m,d(ic sin 4 - yc cos 4)  + I$- 

dX1 + b(X3 - Xa) = 0 (28) 

Iw6, + Xzr = 7, (29) 

I ~ B I  + ~ 3 r  = T( (30) 

where 

117 = in, + 21nw 

I = I, + 2112, (d2 + b2) + 21,,2 

and r, and 71 are the torques acting on the wheel axis 
generated by the right and left motors respectively. 
These five equations of nlotion can easily be written in 
the form of Equation (1). The matrix A(q) has been 
defined in Equation (22). The lnatrices M (q), V(q, q ) ,  
and E(q) are given by 
AJ( r l )  = 

I 
- 

nz 0 -incdsin 4 0 0 
0 m -112,d cos 4 0 0 

-iiz,d sin 4 m,d cos 4 I 0 0 
0 0 0 I w  0 
0 0 0 0 I w  - 

them are nonholonolllic and the third one is holonornic. I11 this case, owing to the choice of S(q) matrix, we 
To obtain the holonomic c~nst~raint ,  we subt,ract Equa- 

have 
tion (21) from Equation (20). 

2bqi = r(e, - 4) (24) v = [ ~ ~ ] = [ B g : ]  
The state variable is then 

Integrating the above equation and properly choosing 
the initial condition of 6, and el ,  we have E = [2, YC 4 6, 61 8, 811 

s l (q) ,  s2(q), s3(q) and s4(q) is involutive. Therefore, 

= c(Q,. - 6,) (2.5) Using this state variable, the clyilamics of the mobile 
platform can be represe~lt~ed in t,he stmate spa.ce form, 

which is clearly a holonomic constraint equation. Equat.ion (8). 

3.2 Dynamic Equations 3.3 Output Equations 

we have 

A* = span{sl(q), sz(q), s3(q), sq(q)) (23) ' ( Q ~ Y )  = 

It follows that,  among the three ~onst~raint~s, t.rvo of 

We now derive the dyna.mic eq~a t~ ion  for t,he mobile J~T'hile t.he state equat,ion of a dynalnic syst,em is 
platform. The Lagrange equations of r-notion of the uniquely, modulo its representatoin, determined by its 

, E(q)  = 

- -m,d$2cos 4 - 
-m,di2 sin 4 

0 
0 

- 0 - 

- - 
0 0 
0 0 
0 0 
1 0  

- 0 1 - 



dynamic characteristics, the output equa.tion is chosen 
in such a way that the tasks to  be performed by the 
dynamic system can be c o n v e n i e ~ ~ t l y  specified and that 
the controller design can be easily accomplished. For 
example, if a 6-DOF robot manipulator is to perform 
pick-and-place or trajectory tracking tasks, the six- 
dimensional joint position vector or the 6-dimensional 
Cartesian position and orientation vector is normally 
chosen as the output equation. 111 this section, we 
present the output equation for the mobile platform 
and discuss its properties. 

I t  is convenient to  define a platform coordinate frame 
X,-Y, at the center of mass of at the mobile platform, 
with X ,  in the forward direction of the platform. We 
may choose an arbitrary point P,. wit,h respect to t,he 
platform coordinate frame Xc-Y, as a reference point. 
The mobile platform is to be colltrolled so that the 
reference point follows a desired trajectory. Let t.he 
reference point be denoted by (x:, y:) in the platforin 
frame X,-Y,. Then the world coordinat,es (x,, y,.) of 
the reference point are given by 

2,. = xc + 2: cos 4 - yS sin 4 (31) 

Yr = yc + X: sin & + y: cos & (32) 

The selection of the reference point for the purpose of 
coordinating locornotioil and manipulation is discussed 
in the following section. Having chosen the reference 
point, x: and y: are constant. By taking the coordi- 
nates of the reference point t o  be the output equation 

we have a trajectory tracking problem st.udied in 
[17, 181. The corresponding decoupling inat,rix for this 
output is 

where 

a11 = c((b - y:) cos 4 - (d + x:) sin 4) (35) 

I = c((b + y:) cos & + (d + x:) sin 4 )  (36) 

@ I  = c((b - y:) sin 4 + (d + x;) cos 9) (37) 

a21 = c((b + y:) sin 5 - (d + x:) cos 4 )  (38) 

Since the determinant of t,he decoupling matrix is 
,.2( . . 

det(@(q)) = - 2" ), ~t 1s singular if and only if 
x: = -dl that is, the point P,. is located on the \vheel 
axis. Therefore, trajectory tracking of a point on the 
wheel axis including Po is not possible as pointed out, 
in [la]. This is clearly due to  the presence of no1111olo- 
nomic constraints. Choosing x: not equal to -d, we 
may decouple and linearize the system. 

Since  ST^ = 1 2 x 2 1  the nonlinear feedback, Equa- 
tions (9) and (17), in this case is simplified to 

and 
u = ~ - l ( ~ ) ( v  - &(+) (40) 

The linearized and decoupled subsystems are 

4 Motion Planning 
For simplicity, a two link planar manipulator is con- 
sidered in this discussion. Let O1 and 02 be t,he joint 
angles and L1 and La be the link length of the manipu- 
lator. Also let the coordii~ates of the manipula.tor base 
with respect to the platform frame X,-I: be denoted 
by (xi ,  yi). We let tjhe reference point to the end point, 
of the manipulator at a preferred configuration. \ e  
choose the configuration that maximizes the manipu- 
lability measure of the manipulator. If we specify the 
position of the end point as the desired trajectory for 
the reference point, the mobile platform will move in 
such a way that the manipulator is brought into the 
preferred configuration. The nlanipulability measure 
is defined as [l] 

where B and J(B) denote the joint vector and Jaco- 
bian matrix of the manipulator. If we consider non- 
redundant manipulators, t,he equation (43) reduces to  

w =I  det J(6)  I  (44) 

For the two-link manipulator shown in Figure 1, t,he 
inanipulability measure w is 

Note that the manipulability mea.sure is maximized for 
82 = &90° and arbitrary 01. \We choose 192 = +90° and 
B1 = -45' to be the preferred configuration, denoting 
them by O1,. and 02,. Then the coordinates of the ref- 
erence point with respect to  the platform frame ;Yc-ITc 
is given by 

x = z i  + Ll cos 01,. + L2 cos(B1,. + 02,.) (46) 

y: = yi + L1 sin 01, + L2 sin(B1, + O2,.) (47) 

\{re emphasize that x; and y: are constant and will be 
used in the representation of t,he out,put equation (33). 



Figure 2: Three desired trajectories. 

The  manipulator is regarded as a passive device whose 
dynamics is neglected. I t  is assumed that  a human op- 
erator drags the end effector of t,he manipulator. The 
positioil of the end effector is given as the desired tra- 
jectory for the reference point p,.. The  inanipulator 
will be kept in the preferred configuration provided 
that  the reference point is able t80 follow t,he desired t8ra- 
jectory. Any tracking error of the reference point will 
leave the manipulator out of the preferred configua- 
tion, resulting in a drop in manipulability measure. To 
count for measurement and communicat.ion dela,y, the 
current position of the end effector is made available to  
the mobile platform a fixed number of sampling periods 
later (five periods in the sinlulation). Further, before 
given to  mobile platform as the desired trajectory, the 
position da ta  of the end effector is approximated by 
piecewise polynomial functions generated in real time 
by singular value decomposifio?r. This approximation 
is to  eliminate high frequency (noise) components and 
t o  allow differentiation of discrete data  in order to  ob- 
tain desired velocity for the reference point,. 

5 Simulation 

The  mobile platform is initially directed toward posi- 
tive X-axis a t  rest and the initial configuration of the 
manipulator is 81 = -45' and 82 = 90'. Three differ- 
ent paths used for the simulat.ion are sholvn in Figure 
2. The  velocity along the paths is constant. 

1. A straight line perpeiidicular to  the X-axis or the 
initial forward direction of the mobile platform, 

2. A forward slanting line by 45 degree from X-axis. 

3. A general curved path.  

Figure 3: Trajectory of t,he point Po for the desired 
trajectory (i) . 

The sampling rate is 0.01 sec. The linear state feed- 
back gains for the two subsystems (41) and (42) are 
chosen so that the overall system has a natural fre- 
quency w, = 2.0 and a damping ratio < = 1.2. The 
higher darnping ratio is to  simulate the slow response 
of the mobile platform. For each simulation, we plot 
the trajectory of Po, the trajectory of the reference 
point P,., the manipulability measure, the joint angles 
of the manipulator, the heading angle of the platform, 
and the velocity of the Po.  

1. Figure 3 shows the trajectory of point Po, in which 
a box3 and a notch on one side represent the m e  
bile plat,fornl and its forward direction, respec- 
tively. Note that the desired trajectory is given 
for the reference point P,.. Po has no desired tra- 
jectory. Figure 4 shows the desired and a.ctual 
trajectories of the reference point P,.. The manip- 
ulability measure, the joint angles, the heading 
angle, and the velocity of point Po are shown in 
Figure 5,6,7, and 8, respectively. Figure 5 shows a 

3These boxes are not equally distributed in time. 
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Trajectory of the reference point 
Y 

Figure 4: Desired and actual trajectories of the refer- 
ence point for (i). 

Figure 6: Joint angles for trajectory (i). 

Figure 5: Manipulability measure for trajectory (i) . Figure 7: Heading angle for trajectory (i). 



Figure 8: Velocity of the point Po for traject,ory (i). 

little degradation of manipulability measure cor- 
responding to the early maneuver by the mobile 
platform. Figure 7 shows that the heading an- 
gle rapidly increases and exceeds 90' at the be- 
ginning, and evenually settles at 90'. The neg- 
tive value in Figure 8 indicates that the mobile 
platform moved-backwa.rds for a short period of 
time a t  the very beginning in order to  achieve the 
needed heading angle. Note that the mot,ion of the 
platform, or exactly the trajectory of point Po is 
not planned. Therefore, the eshibit.ed ba.ckward 
motion is not explicitly planned and is a conse- 
quence of the control algorithm. 

2.  The results for the slanting trajectory a.re shown 
in Figure 9 through 14. Figure 10 sl~o\vs that the 
reference point follows the desired t,raject,ory suc- 
cessfully. From Figure 11, the degradation of ma- 
nipulability measure is smaller than that. of the 
previous case as expected. Figure 14 indicates 
that that no backward motion occurs. 

3. Figure 15 shows the trajectory of point. Po for 
the third simulation. The reference point follows 
the desired trajectory reasonably well (Figure 16). 
The manipulability measure and the joint angles 
are shown in Figure 17 and Figure 18, respec- 
tively. I t  is clear that the maintenance of the high 
manipulability measure is achieved at the cost of 
platform sharp maneuvers. The current study in- 
vestigates a planning algorithin which takes into 
account both manipulability of manipulator and 

Figure 9: Trajectory of the point Po for trajectory (ii). 

Figure 10: Desired and actual trajectories of the refer- 
ence point. for (ii). 



Figure 11: Manipula.bility measure for trajectory (ii). 

Figure 12: Joint angles for t,raject,ory (ii). 

Figure 13: Heading angle for trajectory (ii). 

Figure 14: Velocity of the point Po for t,rajectory (ii). 



Figure 15: Trajectory of the point Po for trajectory 
(iii) . 

Figure 16: Desired and actual trajectories of t.he refer- 
ence point P, for (iii). 

Figure 17: Manipulabi1it.y measure for trajectory (iii). 

hgroc 

maneuverability of mobile pla.tform. This consid- ,,, ;I 
eration will become even more important when a 20 00 

mobile manipulator exerts forces to  the environ- I0 00 

0.W 
ment or is required to  cooperatme wit,11 the ot<her 
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6 Concluding Remarks -60 LW 
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We presented a planning and control algorithm for co- 000 500  1000 I J W  7.001 2 5 ~  M W  

ordinating motion of a mobile manipulator. The de- 
sign criterion was to  control the mobile platform so Figure 18: Joint angles for t ra je~t~ory  (iii). 

that the manipulator is maintained at a configuration 
which maximizes the manipulability measure. We ver- 
ified the effectiveness of our rnetllod by simulations on 



Figure 19: Velocity of the point Po for tmjectory (iii). 

three representative trajectories. For future we 
will investigate the integration of the proposed method 
and force control. An alternative path planning a.p- 
proach will be explored as mentioned in the previous 
section such that the maneuverability of mobile plat- 
form is taken into consideration a3 well. The corltrol 
algorithm is currently being implemented on a mobile 
manipulator which consists of a Labmate nlobile plat- 
form and PUMA 250 manipulator. 
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