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Abstract. We consider nonholonomic mobile manipulators built from an na joint robotic arm and a
nonholonomic mobile platform with two independently driven wheels. Actually, there is no efficient
kinematic formalism for these systems which are generally characterized by their high number of
actuators. So, kinematic modelling is presented with particular emphasis on redundancy. Whereas
kinematic redundancy is well known in the holonomic case, it is pointed out that it is necessary to
define velocity redundancy in the case of nonholonomic systems. Reduced velocity kinematics based
on quasi-velocities are shown to provide an efficient formalism. Two examples of mobile manipu-
lators are presented. Finally, reduced velocity kinematics and velocity redundancy are shown to be
adequate tools in order to realize operational task while optimizing criteria such as manipulability.
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1. Introduction

Mobile manipulators is now a widespread term to refer to robots that combine
capabilities of locomotion and manipulation. When these systems are devoted to
indoor tasks, they are often equipped with wheels. The arrangement of the wheels
and their actuation device determine the holonomic or nonholonomic nature of
this locomotion system (Campion et al., 1996). Whereas some wheeled mobile
manipulators, built from an omnidirectional platform are holonomic (Khatib et al.,
1996), many of them are not (Seraji, 1998; Yamamoto and Yun, 1995).

The tasks assigned to these systems are often translated in terms of End Ef-
fector (EE) evolution, either in point-to-point or in continuous path. Very often,
the redundancy, and thus the versatility, of these systems is emphasized. Although
this concept is well known for robotic arms (see, e.g., (Yoshikawa, 1990; Naka-
mura, 1991)), it is quite different in the case of nonholonomic systems. Actually,
according to the task at hand for the EE, point to point or continuous path, the
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spaces to consider, and thus the redundancy concepts to use, are different. We are
then led to define in this paper two concepts of redundancy: kinematic and velocity
redundancy. We show both redundancies are defined by the same algebraic criterion
applied to two different matrices, the first one being the Jacobian of the system
whereas the second one takes into account implicitly the nonholonomic constraint
and is based on reduced velocity kinematics by using quasi-velocities that define
the mobility control of the system. Singular configurations are also studied. These
results are applied to two mobile manipulators. The first one is chosen for an easy
application of the concepts. The second one exhibits kinematic redundancy, but
does not allow to follow any path in its operational workspace. Finally, operational
motion is considered for the first example of mobile manipulator. Manipulability is
defined for the whole system and is used in a pseudo-inversion control scheme.

2. Modelling

We consider a mobile manipulator composed of a HILARE-like mobile platform
(Giralt et al., 1984) on which is mounted an na-joint rigid robotic arm. The mobile
platform is equipped with two independent driven wheels and possibly some cas-
tors and it moves on a plane surface.� Figure 1 shows an example of such a mobile
manipulator: the H2BIS mobile platform on which is mounted the GT6A 6-revolute-
joints robotic arm. Indices .p denote the parameters relative to the mobile platform,
and indices .a those relative to the arm.

We note R = (O, �x, �y, �z) a fixed frame and R′ = (O ′, �x′, �y′, �z′) a mobile
frame linked to the platform where O ′ is the middle point of the driven wheels
axle. We define also a frame Rna = (Ona , �xna , �yna , �zna ) linked to the EE, and a

Figure 1. H2BIS mobile platform equipped with GT6A robotic arm (with na = 6).

� The methods and notions presented here applies also to car-like platforms equipped with
steering wheels. For details, see (Bayle, 2001).
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point Ona+1 which is the EE center (see Figure 1, for an example). In a classical
way, the configuration of a mechanical system is known when, relative to a given
frame, the position of all of its points is known. It is defined by a vector q of
M independent coordinates, called generalized coordinates. Configuration is then
naturally defined over a M-dimensional manifold N and M is called here mobility
index (some authors, e.g., (Hunt, 1978), call this quantity simply mobility but it
will be useful in the sequel to distinguish mobility index and mobility degree).

If we leave out of account the angular value at the wheels, to define the platform
configuration is equivalent to define the configuration of a rectangle on a plane. Its
generalized coordinates are then three in number: two for the position and one for
the orientation. Let qp = [qp1 qp2 qp3]T = [x y ϑ]T, where x and y are
the abscissa and the ordinate of the point O ′ in R and ϑ is the angle made by the
vectors �x and �x′. Whether the platform is holonomic or not, all the triples (x, y, ϑ)
are reachable (see Remark in Section 4.1).

The robotic arm is mounted on the mobile platform. It is made of na rotoïd
or prismatic joints. Its generalized coordinates correspond to the characteristic
quantities (angular value for rotoïd joints, translation length for prismatic ones)
of the joints and are na in number: qa = [qa1 qa2 . . . qna ]T. Finally, for the
mobile manipulator, M = 3 + na and its configuration is defined by:

q = [q1 q2 . . . qM]T

= [x y ϑ qa1 qa2 . . . qna ]T = [
qT
p qT

a

]T
.

In other respects, the robotic task is naturally defined in terms of location of the
EE that characterizes the position of the point Ona+1 and the orientation of the
frame Rna . Whatever the mechanical system may be, the EE location can then be
defined by means of a vector ξ of m independent coordinates called operational
coordinates (see (Khatib, 1986)):

ξ = [ξ1 ξ2 . . . ξm]T.

The location ξ is then naturally defined over a m-dimensional manifold M with
0 < m � 6.

Remarks.

– It is important to note that contrary to the generalized coordinates, which
are global variables, the operational coordinates – such as they are defined
here – are generally only local variables, defined over a particular map of the
manifold M.

– In the most general case where m = 6, we choose the operational coordinates
such that ξ1, ξ2, ξ3 are Cartesian coordinates of the point Ona+1 in the frame
R, and (ξ4, ξ5, ξ6) are a set of angular parameters, that describe the orienta-
tion of the frame Rna relative to the frame R. It is then well known that the
variables ξ4, ξ5 and ξ6 are only defined on a map of the manifold SO(3) which
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is not isomorphic to R
3. When the problem is in the plane or needs a lower

number of operational coordinates, it is always possible to use locally a subset
of this choice of coordinates.

3. Kinematics

The study of kinematics allows to write the relations between the mobile manip-
ulator configuration and the EE location. In particular, it allows to determine the
configuration(s) corresponding to a desired EE location, in the framework of a point
to point task, for example. Direct Kinematics (DK) expresses the EE location as a
function of the mobile manipulator configuration – or operational coordinates as
functions of generalized ones:

f : N −→ M
q 	−→ ξ = f (q),

i.e. ξi = fi(qj ) 1 � i � m, 1 � j � M.

Inverse Kinematics (IK) allows to compute – when it exists – a configuration of
the mobile manipulator q that leads to an imposed EE location ξ . IK writes:

f −1: f (N ) −→ N
ξ 	−→ q = f −1(ξ),

where f −1 is one reciprocal function of f .
The Jacobian matrix J (q) of the function f has a major significance in order to

define the notions to come. This m × M matrix is such that:

J (q) = ∂f

∂q
, i.e. Jij (q) = ∂fi

∂qj
, 1 � i � m, 1 � j � M,

and represents the linear map between the tangent spaces:

J (q): TqN → TξM,

with ξ = f (q). Thus: rank J (q) + dim Null J (q) = M. Let us note d(q) =
rank J (q) in the configuration q and let us call it local degree of freedom of the EE.
This corresponds to the fact that the EE is constrained by the mechanical system
supporting it and undergoes a holonomic constraint of class c(q) = 6 − d(q). In
fact, locally, d(q) independent operational coordinates are necessary and sufficient
to describe the EE location.

Let:

D = max
q∈N

d(q).

D is the (global) degree of freedom of the EE. From the preceding relations, we
verify that D � M. When D = M, an equal number of independent parameters
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describes the EE location on one side, the mobile manipulator configuration on the
other. In this case, a finite number of configurations corresponds almost everywhere
(a.e.) to the same EE location. On the contrary, when D < M, an infinity of con-
figurations corresponds a.e. to the same EE location. With these notations, we will
denote mobile manipulator kinematic redundancy, the usual redundancy such that
it is defined for holonomic systems and thus for robotic arms.

KINEMATIC REDUNDANCY. A mobile manipulator, holonomic or not, is kine-
matically redundant – with degree R – when the degree of freedom D of its EE is
strictly lower than its mobility index M. In this case, R = M − D and a.e. for a
given EE location there is a R-dimensional set of corresponding configurations.

This is simply the ordinary definition of redundancy for robotic arms (see (Gorla
et al., 1984)). Generally, mobile manipulators are kinematically redundant. The
configurations q such that d(q) < D are called Kinematically Singular Configu-
rations (KSC). The singularity order of the KSC will be equal to, by definition,
D − d(q).

Remark. The notion of degree of freedom of the EE may be used in order
to determine the necessary number of operational coordinates. In fact, if a first
choice of m1 operational coordinates is such that the maximal value of the rank
of the Jacobian matrix is strictly lower than m1, then these coordinates are not
independent and there exists another set of coordinates in number m2 = D < m1

that describes the whole set of admissible locations.

Here, it is worth noting that the Jacobian matrix J (q) does not gather all the
constraints acting on the operational velocities since the nonholonomic constraint
is not taken into account in the definition of J (q) (the nonholonomic constraint is
not integrable and cannot be written as a mere configuration dependent constraint).

In other words, ξ̇ = J (q)q̇ expresses only a part of the constraints acting on ξ̇ .
In the same way, KSC do not reveal specific cases concerning the admissibility of
operational velocities but are to be connected to particular cases in the computation
of solutions of IK.

4. Velocity Kinematics

When we are interested in the operational ξ̇ and generalized q̇ velocities that are
associated to, it is natural to use the notion of mobility degree of the mechanical
system and to define notions such as redundancy from it. In fact, whereas the
mobility index indicates the dimension of the space the generalized coordinates
are defined on, the mobility degree indicates the space dimension of the admissible
generalized velocities.

In this way – in a similar manner to the definition of kinematic redundancy
which has been established from a choice of generalized coordinates that forms
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a basis of the generalized space – the velocity redundancy will be defined from a
choice of quasi-velocities that form a basis of the admissible subset of the tangent
space to the generalized space.

4.1. NONHOLONOMIC CONSTRAINT AND QUASI-VELOCITIES

The mobile platform evolution on the plane is constrained by the rolling without
slipping condition:

ẋ sinϑ − ẏ cosϑ = 0,

i.e. Gp(qp)q̇p = 0, with Gp(qp) = [sin ϑ − cosϑ 0].
This relation is not integrable or nonholonomic. It expresses the dependency,

linear for a given angle ϑ , between the generalized velocities q̇1 and q̇2. Thus, we
can choose a 2-dimensional distribution� that defines in each configuration a basis
for the admissible generalized velocities. In this way, the platform is characterized
by a mobility index Mp = 3 and a mobility degree (Campion et al., 1996) that gives
here the number of independent admissible generalized velocities δp = Mp−1 = 2
since the generalized velocities verify one nonholonomic constraint.
Thus, admissible generalized velocities write:

q̇p = g1(qp)ηp1 + g2(qp)ηp2 ,

where g1,g2 are two 3-dimensional vector fields and ηp1, ηp2 two independent
parameters – also called quasi-velocities (Neimark and Fufaev, 1972). Such a sys-
tem is called a Caplygin system (Neimark and Fufaev, 1972). For these systems,
there exists a natural choice concerning ηp1 and ηp2 and the corresponding distri-
bution (g1,g2). In fact, it can be shown that one of the two parameters ηp1, ηp2

can naturally be chosen as the derivative of the generalized coordinate appearing
in the nonholonomic constraint whereas the second one must be the derivative of
a quantity which is not a coordinate. In this way, we obtain ηp1 = σ̇ = v and
ηp2 = ϑ̇ = ω, where σ is the curvilinear abscissa of the point O ′ along its path.
Finally, we have: g1 = [cosϑ sin ϑ 0]T and g2 = [0 0 1]T. The vector of
quasi-velocities ηp = [v ω]T is the mobility control vector. Then:

q̇p = Sp(qp)ηp and ηp = ST
p(qp)q̇p

with:

ST
p(qp) =

[
cos ϑ sin ϑ 0

0 0 1

]
.

� Basically, a (smooth) distribution

$ = span{f1, . . . , fd } = (f1, . . . , f2)

is the assignment – to each point x of an open set U of R
n – of the subspace spanned by the values at

x of some smooth vector fields f1(x), . . . , fd(x) defined on U . Pointwise, a distribution is a vector
space, a subspace of R

n (Isidori, 1989).
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These quasi-velocities are the time derivatives of the quasi-coordinates σ et ϑ .
In this way, we go back to the well known fact that there exists a one-to-one
relation between the velocities of both wheels on one side, and the angular and
linear velocities of the platform on the other.

Remark. Since (g1,g2, [g1,g2]) spans� a 3-dimensional space, the platform
is controllable (Nijmeijer et al., 1990), and can reach any of its configurations
(x, y, ϑ).

4.2. VELOCITY KINEMATICS OF THE MOBILE MANIPULATOR

Generalized and operational velocities q̇ and ξ̇ are related by ξ̇ = J (q)q̇. However,
the rolling without slipping condition, that was written Gp(qp)q̇p = 0 for the
platform, can be rewritten for the mobile manipulator as:

G(q)q̇ = 0 with G(q) = [Gp(qp) 0].
This equation imposes a nonholonomic constraint on the generalized velocities q̇
of the mobile manipulator. In this way, for every configuration q, q̇ belongs to the
δ-dimensional submanifold &q of the tangent space TqN , where δ = M − 1 is the
mobility degree of the mobile manipulator:

q̇ ∈ &q ⊂ TqN ,

and there exists a linear map J (q) such that:

J (q): &q → TξM.

The matrix of this linear map, which can be also denoted by J (q), is of dimension
m × δ and is not a Jacobian matrix. A δ-dimensional vector η of the following
form:

η = [
ηT
p q̇T

a

]T

can be chosen in &q to express this linear map. It is called the mobility control
vector of the mobile manipulator.

Finally, the constraints acting on operational and generalized velocities are:[
0
ξ̇

]
=

[
G(q)
J (q)

]
q̇. (1)

If we notice that:

η = ST(q)q̇ and q̇ = S(q)η

� [g1,g2] is the Lie bracket of g1 and g2.
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with:

S(q) =
[
Sp(qp) 0

0 Ina

]
,

in which Ina is the na-order identity matrix, we can write Reduced Direct Velocity
Kinematics (RDVK):

ξ̇ = J (q)η, (2)

with J (q) = J (q)S(q).
Then:

rank J (q) + dim Null J (q) = δ. (3)

Now, let:

d̄(q) = rank J (q),

and:

D = max
q∈N

d̄(q). (4)

From relations (3) and (4), we verify: D � δ. When D = δ, an equal number
of independent parameters describes the EE velocity ξ̇ on one side, the mobile
manipulator generalized velocity q̇ on the other. In this case, a finite number of
generalized velocities q̇ corresponds a.e. to the same EE velocity ξ̇ . On the oppo-
site, when D < δ, an infinity of generalized velocities q̇ corresponds a.e. to the
same operational velocity ξ̇ . This leads us to the definition of velocity redundancy.

VELOCITY REDUNDANCY. A mobile manipulator is velocity redundant – with
degree R – when D is strictly lower than its mobility degree δ. In this case, R =

Figure 2. Spaces and redundancies (case D < D).
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δ − D and for a given EE velocity there is a.e. a R-dimensional set of generalized
velocities q̇.

This definition is useless for holonomic systems such as ordinary robotic arms.
In fact, in this case, mobility degree and mobility index are identical and both
redundancies illustrate the same notion.

Remarks.

– Velocity Singular Configurations (VSC) are the configurations q such that
d̄(q) < D. In these configurations, the dimension of TξM decreases and ξ̇
undergoes one or several additional constraints. We will say that these config-
urations are of singularity order equal to, by definition, D − d̄(q).

– We always have: D � D. When D = D, the whole tangent space TξM is
admissible and the velocities ξ̇ can be chosen in a space with dimension equal
to that of M. When, D < D, only an hyperplane &ξ (q) of TξM is admissible
in q. In this latter case, the system may be velocity redundant but such that no
generalized velocity q̇ allows to realize a given operational velocity ξ̇ .

Figure 2 is an illustration of the different redundancies introduced in this sec-
tion.

4.3. VELOCITY KINEMATICS INVERSION

For a given ξ̇ Velocity Kinematics Inversion expresses, when there exists, the so-
lution(s) q̇ which verifies relation (1). Using the notions of quasi-velocities and
mobility degree, it is judicious to decompose this inversion into two steps:

– First Step: computation of Reduced Inverse Velocity Kinematics (RIVK) that
consists in inverting RDVK (2) in order to obtain η. This inversion problem
has at least one solution if and only if RDVK is consistent, that is:

d̄(q) = rank
[
J (q) | ξ̇

]
.

If this condition is verified, all RIVK write as:

η = J
#
(q)ξ̇ + (

Iδ − J
#
(q)J (q)

)
z,

where J
#
(q) is an arbitrary generalized inverse� of J (q), i.e., such that

J (q)J
#
(q)J (q) = J (q) and z is an arbitrary δ-order column matrix.

– Second Step: computation of q̇ from η:

q̇ = S(q)η.

� It is always possible to choose J
+

the pseudo-inverse – or Moore–Penrose inverse – of J (q).
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5. Modelling Examples

5.1. FIRST EXAMPLE: A PLANAR MOBILE MANIPULATOR WITH A MOBILITY

INDEX M EQUAL TO 5

In this section we study the mobile manipulator composed of a HILARE-like mo-
bile platform on which is mounted an horizontal double pendulum robotic arm
(i.e., such that both rotation axes are vertical) (Yamamoto, 1994; Seraji, 1995)
(see Figure 3). Its generalized coordinates are q = [q1 q2 q3 q4 q5]T =
[x y ϑ qa1 qa2]T and thus M = 5. The EE operational coordinates in R are
ξ = [ξ1 ξ2 ξ3]T (m = 3); the first two Cartesian coordinates of the EE center
in R characterize the EE position whereas its orientation is given by the angle ξ3

measured between the axis (O, �x) and the main direction of the EE.
DK writes:

ξ1 = q1 + l1C34 + l2C345,

ξ2 = q2 + l1S34 + l2S345,

ξ3 = q3 + q4 + q5,

and the Jacobian matrix as follows:

J (q) =
[ 1 0 −(l1S34 + l2S345) −(l1S34 + l2S345) −l2S345

0 1 l1C34 + l2C345 l1C34 + l2C345 l2C345

0 0 1 1 1

]
,

where C34 = cos(q3 + q4), S34 = sin(q3 + q4), C345 = cos(q3 + q4 + q5), S345 =
sin(q3 + q4 + q5).

Then, d(q) = rankJ (q) = 3, ∀q ∈ N and D = maxq∈N d(q) = 3. Conse-
quently, the system is kinematically redundant with degree R = 2, and there is no
KSC.

Figure 3. A planar mobile manipulator.



NONHOLONOMIC MOBILE MANIPULATORS 55

Concerning IK, we cannot separate the action of q3 from that of q4 in so far as
only the sum q3 + q4 appears in DK. Thus, there is already a simple infinity of so-
lutions when solving IK since for each value of q3 one can find a corresponding q4.
In fact, there is a double infinity of solutions since one of the members of the pair
(q1, q2) can be chosen arbitrarily, the other one having to satisfy the constraint:

(ξ1 − l2 cos ξ3 − q1)
2 + (ξ2 − l2 sin ξ3 − q2)

2 = l1
2.

Once q3 and one of the members of the pair (q1, q2) have been chosen, the other
member is deduced from the previous relation and (q4, q5) verifies:{

q4 = arctan2(ξ2 − l2 sin ξ3 − q2, ξ1 − l2 cos ξ3 − q1) − q3,

q5 = ξ3 − arctan2(ξ2 − l2 sin ξ3 − q2, ξ1 − l2 cos ξ3 − q1).

Thus, in the platform generalized space, the set of configurations (x, y, ϑ) that are
solutions of IK, for a given EE location ξ = [ξ1 ξ2 ξ3]T in R, is the cylinder
S(ξ) defined by:

S(ξ): (ξ1 − l2 cos ξ3 − x)2 + (ξ2 − l2 sin ξ3 − y)2 = l1
2.

Thus, all points of the cylinder with axis (x = ξ1 − l2 cos ξ3, y = ξ2 − l2 sin ξ3)

and radius l1 in the space (x, y, ϑ) are such that it exists a pair (q4, q5) such that
the EE location in R is (ξ1, ξ2, ξ3). Finally, the set of configurations corresponding
to a given EE location is verified to be a 2-dimensional manifold.

Concerning velocities, RDVK expresses ξ̇ as function of η = [v ω q̇4 q̇5]T.
It writes: ξ̇ = J (qa, ϑ)η with:

J (qa, ϑ) =
[
C3 −(l1S34 + l2S345) −(l1S34 + l2S345) −l2S345

S3 l1C34 + l2C345 l1C34 + l2C345 l2C345

0 1 1 1

]
,

where C3 = cos q3, S3 = sin q3. The rank of J (qa, ϑ) is equal to 3 a.e., i.e., when
q4 �= (2k + 1)π/2. This rank decreases to 2 when q4 = (2k + 1)π/2. Thus D = 3
and for q4 = (2k + 1)π/2, d̄ = 2. Notice that δ = 4.

Remarks.
– The velocity redundancy degree R is equal to 1. In the space tangent to the

configuration space, the set of points that are associated by RIVK to the same
operational velocity is of dimension 1.

– VSC are such that q4 = (2k + 1)π/2 and are of singularity order equal to 1.

5.2. SECOND EXAMPLE: A SYSTEM WITH A MOBILITY INDEX M EQUAL TO 6

We now study a mobile manipulator built from a HILARE-like mobile platform on
which is mounted an RRP arm (see Figure 4).
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Figure 4. A mobile manipulator with a RRP arm.

Its generalized coordinates are:

q = [q1 q2 q3 q4 q5 q6]T = [x y ϑ qa1 qa2 qa3]T

and thus M = 6. The EE operational coordinates in R are:

ξ = [ξ1 ξ2 ξ3 ξ4 ξ5]T;
the first three coordinates are the Cartesian coordinates of the EE center (point O4)
in R and the last two ones are angles defining the orientation of frame R4 in R
(see Figure 4).

DK writes:

ξ1 = q1 + q6C5C34,

ξ2 = q2 + q6C5S34,

ξ3 = q6S5,

ξ4 = q3 + q4,

ξ5 = q5,

and the Jacobian matrix as follows:

J (q) =


1 0 −q6C5S34 −q6C5S34 −q6S5C34 C5C34

0 1 q6C5C34 q6C5C34 −q6S5S34 C5S34

0 0 0 0 q6C5 S5

0 0 1 1 0 0
0 0 0 0 1 0

 ,

with C5 = cos q5 and S5 = sin q5.
Then, d(q) = rank J (q) ∈ {4, 5},∀q ∈ N and D = maxq∈N d(q) = 5.

Consequently, the EE location varies on a 5-dimensional manifold, the system is
kinematically redundant with degree R = 1, and KSC are of singularity order equal
to 1 and such that q5 = kπ since the rank of J (q) is 4 in these configurations.
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By solving IK, it is easy to show that there is an infinity of pairs (q3, q4) that
are solutions and that locally in the KSC there is a double infinity of solutions.

Concerning velocity kinematics, RDVK expresses ξ̇ as a function of
η = [v ω q̇4 q̇5 q̇6]T. It writes ξ̇ = J (qa, ϑ)η with:

J (qa, ϑ) =


C3 −q6C5S34 −q6C5S34 −q6S5C34 C5C34

S3 q6C5C34 q6C5C34 −q6S5S34 C5S34

0 0 0 q6C5 S5

0 1 1 0 0
0 0 0 1 0

 .

Now, we have a square system but it is not invertible. In fact, the maximal rank D

of J (qa, ϑ) is equal to 4 since d̄ = 4 when q4 �= k4π or q5 �= k5π and d̄ = 3 when
q4 = k4π and q5 = k5π :

– The velocity redundancy degree R is equal to 1 since δ = 5. In the tangent
space to the generalized space, the set of points that are associated by the
RIVK to the same operational velocity is of dimension 1.

– However, not all the operational velocities ξ̇ are admissible since D < D.
When operational velocities verify the consistency relation:

S3S5ξ̇1 − C3S5ξ̇2 + S4C5ξ̇3 + C4C5S5q6ξ̇4 − S4q6ξ̇5 = 0

there exists a simple infinity of generalized velocities q̇.
– VSC are such that q4 = k4π and q5 = k5π : they are of singularity order equal

to 1.
Among the different problems that arise in mobile manipulation, we consider in

the sequel the operational motion planning problem and we show how reduced ve-
locity kinematics, velocity redundancy and the associated notions of manipulability
allow to solve it.

6. Operational Motion Planning Problem

We consider the operational motion planning problem when the mobile manipula-
tor is velocity redundant i.e. when the dimension δ of its control of mobility η is
greater than the maximum value D of the rank of J .

Here, we propose a pseudo-inversion scheme to solve the velocity redundancy
and obtain a particular generalized motion for the mobile manipulator when the
end-effector motion is given. From a velocity kinematics point of view we can
explain this coordination strategy as follows. The main idea is to use velocity
redundancy in order to decrease/increase the value of an adequate function and
eventually to minimize/maximize its value. Thus, it is based on a gradient descent
method. Among other geometric or kinematic natural choices (see (Bayle et al.,
2000) for singularity avoidance), we propose here to use different manipulabil-
ity measures and the resulting strategy is applied to the first mobile manipulator
example.
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For a given operational motion ξ ∗(t), the problem is to find the mobility control
η(t) such that ξ̇ ∗(t) = J(t)η(t), in order to asymptotically stabilize the operational
error e(t) = ξ ∗(t) − ξ(t). The matrix J (t) is m × δ with m � δ and we suppose
that its rank is m. Then the previous linear system is consistent and all its exact
solutions are given by:

η(t) = J
+
(t)ξ̇ ∗(t) + (

Iδ − J
+
(t)J (t)

)
g(t),

in which J
+
(t) is the pseudo-inverse of J(t) and g(t) any δ-dimensional vector.

The solution obtained is the one that minimizes the Euclidian norm ||η − g||.
In fact, in order to asymptotically stabilize the error e(t), one can choose:

η(t) = J
+
(t)

(
ξ̇ ∗(t) + W

(
ξ ∗(t) − ξ(t)

)) + (
Iδ − J

+
(t)J (t)

)
g(t), (5)

in which W is a m-order definite positive matrix.
Actually, since J

+
(t) is a right-inverse of J (t), the previous control leads to the

asymptotical stability of the transient error e(t), due to the equation:

ė(t) + We(t) = 0,

By using the expression of η given in (5), q̇(t) = S(t)η(t) writes:

q̇(t) = S(t)J
+
(t)

(
ξ̇ ∗(t) + W

(
ξ ∗(t) − ξ(t)

)) + S(t)
(
Iδ − J

+
(t)J (t)

)
g(t).

(6)

In this equation the first term is due to the input and the second one is the internal
motion. We now use velocity redundancy to propose a coordination strategy for the
internal motion based on a gradient descent method. In general, let P be a scalar
function depending on the mobile manipulator configuration q(t). We can write:

Ṗ (t) = ∇TP (q(t))q̇(t)

= ∇TP (q(t))S(t)
(
Iδ − J

+
(t)J (t)

)
g(t),

for the internal motion where ∇P (q(t)) is the gradient of the function P (q(t)). In
order to decrease P (t), that is Ṗ (t) � 0, we propose the choice:

g(t) = −k
(
(∇TP )H

)T
,

where k is a positive scalar and H(t) = S(t)(Iδ − J
+
(t)J (t)). Indeed, with this

choice:

Ṗ (t) = −k
(
(∇TP )HH T(∇P )

)
and then Ṗ (t) � 0.

Finally, the mobility control is:

η(t) = J
+
(t)

(
ξ̇ ∗(t) + W

(
ξ ∗(t) − ξ(t)

)) − k(∇TP )HH T(∇P ).
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This approach can be applied to various functions P . In the next paragraph, we
demonstrate how it can be applied by taking P as manipulability measures.

7. Using Mobile Manipulator Manipulability Measures

7.1. MANIPULABILITY

Manipulability theory has been introduced by Yoshikawa for holonomic robotic
arms (Yoshikawa, 1990). Basically, it describes the set of operational velocities ξ̇a
realizable by the robotic arm in a given configuration when generalized veloci-
ties q̇a are bounded in a unit ball ||q̇a|| � 1 where ||·|| stands for some Riemmanian
norm in order to normalize from velocity bounds, inertia matrix, etc. So manipu-
lability aims to answer in different metrics the question: for a given configuration,
what is the ability of the system to provide operational velocities in any direc-
tions? When considering the simplest case of an Euclidean norm, this answer relies
essentially on the Singular Value Decomposition (SVD) of the Jacobian matrix
Ja(qa) that maps generalized velocities q̇a to operational velocities ξ̇a of the ro-
botic arm EE. The resulting set of operational velocities is an ellipsoid whose axes
dimensions are given by the singular values σ1, σ2, . . . , σma

. Different algebraic
measures have been proposed to characterize this ellipsoid. They are often called
manipulability measures and give a scalar information. The more usual manipula-
bility measure is wa = σ1σ2 · · · σma

which is proportional to the ellipsoid volume.
It thus gives a quantitative information on the manipulability.

In this paper, we will also use a manipulability measure� extending the notion
of eccentricity of the ellipse (Bayle et al., 2001):

wa5 =
√

1 − σ 2
ma

σ 2
1

.

7.2. THE MANIPULABILITY OF MOBILE MANIPULATORS

The first contribution, to our knowledge, that dealt with manipulability in mobile
manipulation is devoted to the manipulability of the sole arm (Yamamoto, 1994).
Depending on the tasks at hand, there is an interest in considering the ability of
generating velocities at the end-effector by acting on the sole arm or by acting on
the whole system. Here, we develop an analysis of the whole mobile manipulator
manipulability.

Manipulability can be defined for nonholonomic mobile manipulators from the
definition of the RDVK:

ξ̇ = Jη,

� We call this measure wa5 as Yoshikawa defines four other measures.



60 B. BAYLE ET AL.

since this model describes the instantaneous velocities of the EE for given controls
of mobility. That way, we are looking for the realizable EE velocities such that the
corresponding control of mobility η verifies ||η|| � 1.

It is generally not possible to separate analytically the effects of the platform
and of the robotic arm on manipulability. So they will be visualized through several
numeric simulations.

Remarks.
– The norm we considered has been obtained from the maximum generalized

velocities in our study, but for sake of simplicity we do not mention the
normalization in the writings.

– The mobile manipulator manipulability measure has been defined in a way
similar to that of the arm. Yet, depending on the application we may have to
consider the whole system manipulability or the robotic arm manipulability
(for instance, when the mobile manipulator is not used in a coordinated fash-
ion strategy). If the user wants to keep the platform motionless to manipulate
with the arm alone, it would be convenient to reach the operating site in a
good configuration for the arm, from a manipulation point of view. Also, both
manipulability definitions can be useful for the same task.

– The analytical expression of the manipulability is complex even for a simple
mobile manipulator. It may not be helpful to design the P function. Rather it
would be more interesting to consider functions of manipulability with min-
imum corresponding to optimal configurations, such as (−w) or w5, and to
compute their numerical gradient.

In the sequel, we report the results obtained for two different tasks. For both of
them, only the position of the end-effector is imposed. From case to case, we will
choose:

– w5 manipulability measure, whose value decreases with anisotropy of EE

admissible velocities;
– Yoshikawa’s manipulability measure with opposite sign (−w) whose value

decreases when the system moves away from singular configurations.

First task. Figures 5 illustrates the tracking of an operational motion the asso-
ciated path of which being elliptic. Here, the global manipulability of the mobile
manipulator is considered through the choice of w5 measure.

After a transient phase, the EE follows its imposed motion. It is worth noting
that during the most part of the motion, the manipulability ellipse is very similar to
a circle: the w5 manipulability measure with respect to the subset of the considered
operational coordinates – position coordinates in the plane – is minimized.

Second task. It is interesting to leave the user free to choose the relative weighting
between the arm manipulability and the mobile manipulator manipulability mea-
sures. In fact, depending on the task at hand, we may need to use both kind of
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Figure 5. Tracking an operational motion with elliptic path.

Figure 6. Convex combination of manipulability measures.

measures. Let us take the example of a mobile manipulator that must first realize
a coordinated operational task and then manipulate in a narrow zone. In this latter
zone, moving the platform may be unsuitable and it is interesting to manipulate
only with the arm: in this case, it will be interesting to consider the sole arm ma-
nipulability. Influence of both tasks can be taken into account by using a function
that writes:

P = α(ξ ∗)P̃p+a + (
1 − α(ξ ∗)

)
P̃a. (7)
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It is a convex combination of the arm manipulability measure P̃a and of that of the
mobile manipulator P̃p+a where the function α(ξ ∗) ∈ [0 1] is a cubic polynomial
in order to verify the 4 boundary conditions. This function allows us to adapt the
criterion to the mobile manipulator configuration or to the EE location. Thus, we do
not use a multi-criteria function, but a transition from a criterion to another one.
Such a choice is illustrated by Figure 6.

The mobile manipulator moves in free space, from a control mode where its
manipulability is taken into account to another control mode where the arm ma-
nipulability is taken into account. It can be remarked that the arm manipulability
may be poor whereas the whole system keeps a good measure of manipulabil-
ity (see Figure 6, zone 1). This underlines that the choice of the manipulability
measure to be used is task-dependent.

8. Conclusion

This paper has introduced notions of kinematic and velocity redundancies con-
cerning nonholonomic robotic systems. Kinematic redundancy characterizes the
dimension of the space of solutions in inverse kinematics, whereas velocity redun-
dancy characterizes the dimension of the space of solutions in velocity kinematics
inversion. The latter notion is expressed in a quasi-velocities based formalism. In
this way, kinematic and velocity redundancies are obtained by a rank computation
of two matrices; the first one is the classical Jacobian matrix whereas the other one
implicitly takes into account the nonholonomic constraint.

These notions are illustrated by two nonholonomic mobile manipulators built
from a HILARE-like platform. They are also totally adapted to the definition of
notions such that self motion manifold or manipulability in the nonholonomic case
and allow to realize velocity control schemes with a reduced set of independent
coordinates. In this frame, manipulability based control schemes have been proved
useful for solving velocity redundancy when operational path or motion is imposed.
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