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Abstract 

The minimum-time manipulator control problem is solved
for the case when the path is specified and the actuator torque
limitations are known. The optimal open-loop torques are
found, and a method is given for implementing these torques
with a conventional linear feedback control system. The
algorithm allows bounds on the torques that may be arbitrary
functions of the joint angles and angular velocities. This
method is valid for any path and orientation of the end-
effector that is specified. The algorithm can be used for any
manipulator that has rigid links, known dynamic equations of
motion, and joint angles that can be determined at a given
position on the path.

1. Introduction

For many industrial applications, present robotic ma-
nipulators are too slow to justify their use economi-
cally. Their speed and hence their productivity are
limited by the capability of their actuators. Increasing
actuator size and power is not the best solution; it is
largely self-defeating because of the increased inertia of

the actuators themselves and because of the increased

cost and power consumption of the larger actuators. A
more successful approach is to minimize the time
needed to perform a given task, subject to the con-
straints imposed by the actuators. The subject of this
paper is the minimum-time control problem for appli-
cations where the path of the manipulator is specified.
Work on minimum-time control problems for

manipulators began as early as the late 1960s (Kahn
1970; Kahn and Roth 1971 ). The limits on the actua-
tor torques were assumed to be constant, and the path
was not constrained (only the endpoints were speci-
fied). Although this approach is suitable for some ap-
plications, it is often necessary to specify the manipu-
lator trajectory in order to avoid obstacles. This
additional collision-avoidance constraint may be
added to the unconstrained path minimum-time prob-
lem. The result is a highly nonlinear, difficult-to-solve
optimal control problem.
Niv and Auslander (1984) show some progress

toward solving this problem using a parameter optimi-
zation scheme on the joint actuator switching times.
During the motion, each actuator exerts maximum
control torque (bang-bang) while enabling the manip-
ulator to avoid all obstacles and reach its final destina-
tion. This method involves considerable computation
and may be difficult to implement for general manip-
ulators. Another approach (Dubowsky and Shiller
1984) is to minimize the time along any known path
using the algorithm described in this paper and to vary
the path to find the one that avoids all obstacles and
gives the shortest time.
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Several other researchers have addressed the time-

optimal control problem. Lynch ( 19$1 ) developed a
specialized minimum-time algorithm for the Stanford-
type manipulator, assuming that the actuator torque
bounds were constant. Another method (Hollerbach
1984) has been developed that scales any known path
velocity profile to make full use of the actuators.
While this method produces shorter traveling times
than conventional techniques, it does not produce the
minimum-time solution. A technique also was devel-
oped (Luh and Walker 1977; Luh and Lin 19$1 ) to
minimize the time required to move along a specified
path consisting of straight lines and circular arcs. In
this work, piecewise constant acceleration and maxi-
mum velocity constraints were assumed. Although
these assumptions are common in manipulator con-
trol, the maximum achievable accelerations and velo-
cities actually can vary substantially with manipulator
configuration and angular velocities, both because of
the nonlinear manipulator dynamics and because the
maximum torques that electric motors and hydraulic
actuators can produce depend on the angular velocities
of the joints (Herrick 1982; Kollmorgen Corporation
1983).
This paper presents in detail the solution derived by

Bobrow (1982) and presented in Bobrow, Dubowsky,
and Gibson (1983) of the minimum-time control
problem with specified manipulator path and state-
dependent constraints on the actuators. The actuator
torque and force constraints can be arbitrary functions
of the joint positions and velocities. Rigid links are
assumed, and the full manipulator dynamics are mod-
eled. The solution given here is valid for any smooth
path along which the joint angles, including end-
effector orientation, can be determined uniquely at
each point.

In the solution presented here, the distance and
velocity of the end-effector along the specified path are
taken as the state vector, and the nonlinear manipula-
tor dynamics and actuator constraints are transformed
into state-dependent constraints on the acceleration
along the path. The problem thus becomes a time-
optimal problem for a second-order linear system with
nonlinear state-dependent constraints on the control,
which is the acceleration along the path. The basic
idea of the solution is to select the acceleration profile
that produces the largest velocity profile such that, at

each point on the path, the velocity is no greater than
the maximum velocity at which the actuators can hold
the manipulator on the path.

This solution is given in terms of a switching curve
in the phase plane for the tip motion along the path.
When the velocity lies below the switching curve,
maximum acceleration is optimal; when the velocity
lies on the switching curve, either maximum accelera-
tion or maximum deceleration is optimal, depending
on the location on the switching curve. Because the
actuator efforts can be determined from the position,
velocity, and acceleration along the path, the switching
curve provides a graphical representation of the feed-
back law for the time-optimal control. The switching
curve can be computed efficiently by iteration on one
switching point at a time while solving a first-order
nonlinear differential equation.
We should note that Shin and McKay (1984) have

subsequently derived a similar algorithm. With the
assumptions that the bound on each actuator torque is
a quadratic function of the joint velocity and that each
joint position is written as a polynomial in the path
parameter, they have obtained added insight into the
case of high joint friction.

Because the mathematical optimal control problem
involves a second-order system with constraints on the
control, we first tried standard optimal control methods
- in particular, Pontryagin’s maximum principle -
for the solution. However, in even the simplest cases,
the numerical algorithms did not converge to a solu-
tion. The solution finally came from the nonstandard,
though conceptually straightforward, approach in this
paper, and the resulting numerical algorithm has per-
formed well on numerous examples.
The control problem is formulated first in Section 2

for a three-degree-of-freedom elbow-type manipulator.
After the mathematical optimal control problem is
derived, the solution is given in the form of an algo-
rithm for constructing the switching curve. While the
motivation for the algorithm is discussed in Section 2,
the complete mathematical proof that the algorithm
indeed gives the optimal control is deferred until the
Appendix. At the end of Section 2 an example with a
curved three-dimensional path is given.

Section 3 shows how the dynamics and orientation
of the end-effector can be included in the problem. In
fact, any number of degrees of freedom can be han-
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Fig. 1. The manipulator
model used in this study.

dled as long as all of the joint angles can be determined
by an inverse arm solution at each point on the path.
In this case, the algorithm in Section 2 still applies.
Also, it is pointed out in Section 3 that, while it is eas-
iest initially to think of the state variable in the mathe-
matical optimal control problem as the distance along
the path, the results of the paper apply for almost any
parameterization of the path.
The development presented in Section 2 uses La-

grange’s equations with the joint positions as the gen-
eralized coordinates. Section 4 extends this develop-
ment to cases where more than the minimum required
number of coordinates are used to describe the system.
Lagrange’s equations are used along with Lagrange

’ 

multipliers to formulate the equations that must be
solved. A detailed example is presented that demon-
strates that this approach often reduces the complexity
of the equations.

2. Formulation and Solution of the Optimal
Control Problem

2.1. PROBLEM FORMULATION

To illustrate the minimum-time control algorithm, we
first consider the relatively simple case where the tip
of the three-degree-of-freedom manipulator shown in

Fig. 1 is required to move along a specified path Po to
I, starting and finishing at rest. This case does not
include the motion of the end-effector relative to the
second link. In this case, the dynamics of the end-
effector are assumed to have negligible influence on
the dynamics of the manipulator, as in many industrial
robotic systems. The method can handle such motion
if the orientation of the end-effector is specified at
each point on the path, as illustrated by the third ex-
ample in this paper, and in Dubowsky and Shiller
(1984).
The equations of motion for this system can be

derived using Lagrange’s equations (see Bobrow 1982),
which have the form

The vectors 0 = (81, 02, 83)T and T = { T1, T2 , T3)T
are the joint angles and the applied actuator torques.
The torque T, acts about the ~-axis, and T2 acts be-
tween links 1 and 2. The detailed definitions of the
mass matrix M and vector h are given in Bobrow (1982).
The optimal control problem is as follows: Given

the manipulator equations of motion (Eq. 1), a path
through which the tip must move (Fig. 1), and actuator
torque constraints of the form

find the torques T(t) that will drive the manipulator
from the initial position at Po to the final position at Pi
in minimum time.

In our solution, the time-optimal control problem is
transformed into an equivalent mathematical optimal
control problem in which the single control variable
is the tip acceleration along the path; that is, ~ =

d 2x/dt2 where x is measured along the path from Po .
For the transformed problem, we must determine at
each position and velocity on the path the constraints
on the linear acceleration x corresponding to the ac-
tuator torques. This requires that the joint angles be
computed as functions of x and that the angular ve-
locities and accelerations be computed as functions of
x, ~, and ~; that is, we must have
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With the path of the tip specified, the function 8(x) for
Eq. (3A) is determined at least implicitly. We empha-
size that 0 need not be written as an explicit function
of x; the ability to compute 8 numerically for each
value of x is sufficient. Similarly, instead of explicit
expressions for Eqs. (3B) and (3C), numerical evalua-
tion of 8 and 9 according to the following kinematic
development is sufficient.
To obtain Eqs. (3B) and (3C), we note that the posi-

tion vector r of the tip can be thought of as either a
function of the joint angles or a function of the dis-
tance along the path. Hence we write

Differentiating Eq. (4) with respect to time yields

where [re] is the Jacobian matrix of partial derivatives
of the position vector components with respect to the
joint angles and rx is the unit vector tangent to the
path. Then, when the manipulator is not at a singular
point, the Jacobian [r.] is invertible and we can solve
Eq. (5) for the expression in Eq. (3B):

We should note that, in practice, manipulator trajec-
tories with singularities are avoided.
For Eq. (3C), differentiating Eq. (5) with respect to

time yields

where [ro] is the time derivative of the Jacobian ma-
trix and rxx is the second derivative of r with re-
spect to x. (The expression [re]6 contains the term
(a2r, laOia0k)OjOk, familiar in rigid-body dynamics; see
Bobrow 1982.)
Note that the first term on the right-hand side of

Eq. (7) is the tangential acceleration of the tip along
the path and the second term is the normal accelera-
tion. Still assuming that the manipulator is not in a
singular configuration, we can solve Eq. (7) for Eq. (3C):

Now we can derive expressions for the maximum
acceleration and deceleration the actuators can pro-
duce, at any distance x along the path and velocity x.
Substituting Eq. (8) into Eq. (1) yields

Given the distance x along the path, the tip velocity X,
and the tangential acceleration X, Eq. (9) shows the
unique values of the three actuator torques to be

With Eq. (12), the torque constraints in Eq. (2) yield
the following constraints on acceleration:

Since, for any x and,~, O(x) and O(x, X) can be com-
puted from the inverse arm solution and Eq. (6), Ti,,,i.
and T¡max can be written as functions of x and x.
Then, if c1¡{x) =f:. 0, Eq. ( 13) can be written as
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When Cli(x) ~ 0, Eqs. (14)-(16) give the range of tip
acceleration for which the actuators can hold the tip
on the path without violating the ith constraint in Eq.
(2). For the tip to remain on the path, s must lie in
the intersection of the intervals Lf;(x, .~}, gi(x, x)], with
the intersection taken over the values of i for which

cl‘(x) ~ 0. It can happen, usually when the velocity is
too great, that the intervals [fi(x, x), g,(x, ~c)] do not
intersect, in which case the manipulator tip will leave
the path immediately. On the other hand, if c~1(x) ~ 0
for all i and the three intervals [fi(x, X), gi(x, ~c)] have
nonempty intersection, then the necessary and suffi-
cient condition for the tip to stay on the path is that
Eq. (14) hold for all i.

Although the constraints in Eq. (13) must hold for
all i, if Cl¡(X) = 0 for some i, then the selection of x
cannot affect whether Eq. (13) holds for that i. In this
case, k must be chosen to satisfy the two remaining
constraints. As long as the manipulator is not in a sin-
gular configuration, there will be at least one nonzero
C,,(x). This follows from the right-hand side of Eq.
(10) since the mass matrix M(8) is always positive
definite and i~x is a unit vector.
For given x and x, an admissible acceleration is any

tangential acceleration ~ at which the actuators can
hold the tip on the prescribed path without violating
the constraints. The foregoing discussion shows that, if
any admissible acceleration exists, then the range of
admissible accelerations is given by

where

and

with the maximum and minimum taken over those i
for which cl~{x) ~ 0. See Fig. 2. Note that if two of the
intervals [ f (x, ~), gi(x, ~)] do not intersect, then
f(x, ~) > g(x, x). Maintaining f(x, x) - g(x, x), so that
an admissible acceleration exists, is a key idea in solv-

Fig. 2. Ranges of accelera-
tion possible for each actua-
tor at some irtstartt.

ing the time-optimal problem. We now have the
mathematical time-optimal control problem:

Given x(0) and x(0), choose ~(t) to minimize the
final time tffor which x(tf) = xfand x(tf) = xf,
subject to Eq. ( 17) at each t.

Although we have transformed the manipulator
control problem so that the tangential acceleration be-
comes the control variable for the mathematical time-

optimal problem, we have not lost sight of the torques,
which are the physical controls. Recall that Eq. (12)
gives the actuator torques/forces in terms of x, x, and x.

2.2. SOLUTION OF THE TIME-OPTIMAL PROBLEM

The basic idea of the time-optimal solution is to
choose the acceleration X to make the velocity x as
large as possible at every point without violating the
condition f(x, k) % g(x, x). This is suggested by the
identity

It is proved in the Appendix that to minimize y, S
always takes either its largest or its smallest possible
value; that is, either = g(x, x) or ~ = f (x, ~). There-
fore, finding the optimal control law amounts to find-
ing the times, or positions, at which x switches be-
tween maximum acceleration and maximum
deceleration.
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Fig. 3. A typical minimum-
time trajectory with one
switching time.

2.2.1. Problems with One Switching

The best approach for finding the switching position is
to construct the switching curves in the x &horbar; x phase
plane. We will give an algorithm for the construction
for problems with multiple switchings, but first it
should help to consider the case of one switching. A
typical minimum-time trajectory with one switching is
shown in Fig. 3. The manipulator tip starts accelerat-
ing from the initial position xo with x = g(x, At the
switching position xs, the acceleration switches to
.~ = J~(x, ac) and continues this deceleration until com-
ing to rest at the final position xf.
To find Xp we solve X = g(x, jc) forward in time

from the point x = xo, X = 0 to some point a as shown
in Fig. 3. Then we solve x = f(x, ~) backward in time
from x = xI’ x = 0 until the two trajectories intersect at
x,. The phase plane trajectory that results from solving
x = f(x, X) backward from x = xf, x = 0 is the switch-
ing curve for this case. If the manipulator starts at
some position xl with tip velocity Xl’ as shown in the
figure, the optimal control policy is to use the maxi-
mum acceleration x = g(x, jf) until the phase plane
trajectory intersects the switching curve and then
switch to maximum deceleration X = f (x, .~).

2.2.2. Multiple Switchings

The minimum-time problem becomes considerably
more difficult when the maximum acceleration curve
jc = g(x, X} proceeding from xo and the maximum
deceleration curve = f(x, ~) proceeding backward

Fig. 4. An example showing
the minimum-tiyne trajectory
construction method.

from xf do not intersect before the velocity becomes
too large and the condition f (x, z) - g(x, x) is violated.
In this case, before the final switch to the deceleration
curve that brings the tip to rest at xf, the optimal con-
trol policy requires earlier switches between accelera-
tion and deceleration to avoid building up velocities,
and hence large inertial forces, at which the actuators
can no longer hold the tip on the specified path.

Finding the multiple switching points is the most
difficult part of the minimum-time problem. Several
approaches were tried, including a conjugate gradient
optimization algorithm that treated the switching
times as parameters and the numerical solution of the
two-point boundary value problem that results from
the maximum principle with state-dependent con-
straints on the control (Leitmann 1966). In neither of
these approaches did the numerical algorithm con-
verge to a solution in even the simplest cases. We
finally developed a nonstandard approach that is actu-
ally more straightforward and that has been successful
on numerous examples. This method yields a simple
numerical algorithm for constructing the switching
curve.

The method is motivated by noting that, for most
points on the path, there is a tip velocity above which
no combination of admissible torques will hold the
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manipulator on the path. For a given path, then, we
have a maximum velocity curve in the phase plane, as
shown in Fig. 4. Below the curve, we have f(x,,~)
g(x, ~), so that x can be chosen to satisfy Eq. (17).
Above the curve, we have f(x, x) > g{x, x), so that no
admissible exists. The curve satisfies f{x, x) = g(x, ~c)
and is the key to the algorithm.
We state here our most understandable version of

the algorithm for constructing the switching curve. In
the Appendix we prove that the control policy deter-
mined by this switching curve is optimal. The idea is
that the higher the phase plane trajectory, the shorter
the traveling time, as indicated by Eq. (20). To mini-
mize the traveling time, is always chosen as either
the maximum possible acceleration g(x, X) or the
maximum possible deceleration f (x, x). The switchings
between g(x, x) and f(x,,~) are chosen so that the
phase plane trajectory just touches the maximum
velocity curve. The switching curve is constructed by
the following six steps. Refer to Fig. 4.

Step l. Integrate the equation x = g(x, X) from the
initial state {xo, ~0) until the maximum velocity
curve is reached at some point a.

Step 2. From point a, drop to some lower velocity
on the dotted vertical line and then integrate the
equatian x = f(x, ~) forward in time. One of two
things will happen: Either the trajectory will inter-
sect the maximum velocity curve again at some
point b or the trajectory will intersect the x-axis at
some point c. The object is to find, by iteration,
the point a’ such that the deceleration (Jc = f )
trajectory emanating from a’ just touches the
maximum velocity curve at a single point d and
then continues downward, intersecting the x-axis
at c’. If c’ = xf, then there is only one switching
point.

Step 3. From a’, integrated = f{x, ~) backward in
time until the acceleration trajectory from xa to a
is intersected at some point e.

Step 4. Integrate the equation x = g(x, ~) forward in
time from point d until either x~ is passed or the
trajectory again intersects the maximum velocity
curve, as at point h. It is proved in the Appendix
that it is possible to resume maximum accelera-
tion (x = g) at d without immediately violating
f (x5 x) = g(x, x) ·

Fig. 5. A three-dimensional
path. Dimensions are in feet.

Step 5. Finally, integrate the equation = f(x, X)
&dquo; 

backward in time from the final position until the
trajectory from d to h is crossed at point i.

Step 6. If the deceleration trajectory proceeding
backward from xf does not intersect the accelera-
tion trajectory from d to h, then there are more
than three switchings. In this case the switching
point between d and h is determined as point e is
determined in steps 2 and 3, and the algorithm is
continued until xf is reached.

The curve xoedtx~ is the switching curve. For any
initial conditions (x(0), X(0)} that lie beneath this
switching curve, the optimal control policy is to use
maximum acceleration until the switching curve is
reached and then switch to deceleration and follow the

switching curve to xf.
Some computation can be saved by solving the first-

order equations dac/dx = g/.~ and dxjdx = fix instead
of x = g and x = f. Also, these first-order equations are
more convenient for the more rigorous statement of
the algorithm in the Appendix.

Finally, note that the initial and final velocities ac-
tually need not be zero. By simply letting the x-axis in
Fig. 4 intersect the x-axis at ~ = xf, the desired final
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Fig. 6. The actuator torque
constraints.

velocity along the path, we can construct the switching
curve just as above. Therefore, the method can be
applied directly, for example, to a problem where an
object is to be moved from one moving conveyor to
another in minimum time.

2.3. EXAMPLE 1

For each link of the manipular in Fig. 1, we take the
length to be I ft and the weight to be 32.2 lb. We re-
quire the tip to move along the three-dimensional
path in Fig. 5, which consists of two straight lines con-
nected by a circular arc of radius .2 ft. The arc
smooths out the corner formed by the intersecting
lines POP2 and PIP2, where Po = ( 1’, 0, 1’), P, = ( 1’,
1’, 0) and P2 = (.5’, .5’, .5’). The torque constraints are
the linear functions of the motor angular velocities
shown in Fig. 6.
The minimum-time algorithm given in steps 1-b

yields the maximum velocity and switching curves
shown in Fig. 7. Note that the segment of the switching
curve just past the second switch indicates that the
maximum acceleration g(x, ~) is actually negative for
a short time. Figure 8 shows the optimal actuator
torques as functions of time.

Fig. 7. The time-optimal
trajectory for the path in
Fig. 5.

3. Modeling the Dynamics and Orientation
of the End-Effector

Most industrial manipulators have two or three de-
grees of freedom for the end-effector in addition to the
three degrees of freedom for the links considered so
far. In many applications, the dynamics and orienta-
tion of the end-effector are significant and must be
modeled. The method of Section 2 can include such

applications if the orientation of the end-effector is
prescribed for each point on the trajectory, as usually
is the case with programmed trajectories. We now
show how the method of Section 2 applies to this case.
We assume that there are k( 1, 2, or 3) additional

degrees of freedom for the end-effector, each repre-
sented by a joint variable 9l, and that there is an addi-
tional actuator for each degree of freedom, producing
a joint torque/force Ti about the 0;-axis. The 0 and T
vectors then are expanded to 9 = (B, , 92, ... , °3+k)T
and T = (Tl’ T~, ... , T3+k)T.
We assume that on the end-effector there is a point

P whose path is specified as in Fig. 1. The 3-vector

r(0) contains the coordinates of P as before. The orien-
tation of the end-effector is represented by a k-vector
s(0). Since the position of P can be written as a func-
tion of 9 and of x, we have
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Fig. 8. Optimal actuator
torque versus time.

Also, the orientation of the end-effector will be pre-
scribed along the path by k scalar equations having the
vector form

To generalize the method of Section 2 to include
the present case, we expand the vector r(8) by writing

Then Eq. (23) replaces Eq. (4) and, from here, the
development in Section 2 can be retraced easily to see
that, after Eq. (4), all the equations hold with the more
general (3 + k)-vectors 0, R(O), and T.

Recall that when the dynamics and orientation of
the end-effector were neglected, the vector rx was the
unit vector tangent to the path. We now have the more
general

where rx is the unit vector tangent to the path of F and
Sx = d s/dx. The Rx of Eq. (24) is now used in Eqs.
{5)-(11). The (3 + k) X (3 + k) Jacobian [re] will be
singular at most at isolated points in 0-space, which,
again, are avoided in practice.

Another easy generalization can be useful in appli-
cations. The variable x need not be the actual distance

along the path; rather, x can represent any parameteri-
zation of the path that is continuously differentiable
with respect to distance. We need only require that
rx = dr / dx =1= 0 at each point on the path, so the argu-
ment for at least one component of the vector c, being
nonzero still holds. This is not restrictive for sensible

path parameterizations, although generally cx will not
be a unit vector.
For the generalizations discussed in this section, the

time-optimal control algorithm in Section 2.2 and the
proof of its optimality in the Appendix are unchanged.

4. Lagrange Multipliers

So far we have assumed that the equations of motion
of the manipulator have the form of Eq. (1), where the
joint angles Oi are independent generalized coordi-
nates. In applying our optimal control algorithm, we
have found it convenient to use additional coordinates

along with Lagrange multipliers. With Lagrange multi-
pliers, the coordinates of the center of mass of the
end-effector can be included among the generalized
coordinates to make the chore of writing Lagrange’s
equations more tractable.

4. ~ . INCLUDING THE EXTRA DEGREES OF FREEDOM
AND CONSTRAINTS 

_

If z is the vector containing the Cartesian coordinates
of the center of mass of the end-effector, we have the
holonomic constraints

which result from writing the position vector z in terms
of the joint angles. In general, z is a 3-vector; however,
if (as in Example 3 below) the end-effector moves only
in the plane, z can be a 2-vector. Differentiating Eq.
(25) with respect to time, we obtain the nonholonomic
form
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where the matrix [zg] contains the partial derivatives
a.z; /o~BJ . Then, selecting the generalized coordinate
vector

we obtain the Lagrange equations

where M(q) is the mass matrix; 1~(q, q) is a vector that
arises from the rotation of the links and from gravity;
T is the vector of actuator torques; and A is the La-

grange multiplier vector. The term B1T is the general-
ized force corresponding to the torques and forces on
the joints.

Since we are assuming an independent actuator for
each degree of freedom (i.e., for each 0;), the matrix B,
is invertible, and therefore

This allows us to solve Eq. (28) for T as a function of
q, q, and q. Now, just as before, after using the inverse
arm solution to obtain O(x), we can use Eqs. (6) and
(8) to obtain 9(x, x) and ~(x, ~, x). Then Eqs. (25)-
(27) show how to compute

a

In particular, q has the form

With these expressions, Eq. (28) can be solved for T
and A to obtain

Fig. 9. A tfiree-degree-of
freedom planar manipulator.

which is the same as Eq. (9) except that

Recall also that [ze] = [Z8(O(X))].
With Eqs. (32)-(34), the functions £(x, ~-) and

gi(x, x) for the time-optimal algorithm are defined as
in Eqs. ( 15) and ( I 6), and the algorithm proceeds just
as in Section 2.

4.2. EXAMPLE 2

This example is a planar problem in which we have
added a third link to represent the end-effector. The
third link must traverse the path PoPI shown in Fig. 9
while remaining horizontal, perhaps to avoid spilling a
payload.

Introducing the Cartesian coordinates of the center
of mass of the third link reduces the effort required to
write the kinetic energy and derive Lagrange’s equa-
tions. We will denote these extra coordinates by z, and
zz . The generalized coordinate vector then is q = (0,,
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B2, 83, Zl, Z2)’~ In terms of these coordinates, the
kinetic energy is

and the potential energy is

The constraints in Eq. (25) are

By applying Lagrange’s equations to the kinetic and
potential energies, we obtain the following nonzero
components of the mass matrix M(q):

The vector h(q, q) in Eq. (28) has components

Finally, the 5 X 5 B matrix is

Fig. 10. The minimum-time
trajectory for the path in
Fig. 9.

where

For this case, we have the very nice property that
B-1 = B (this can be seen by computing BB to obtain
the identity matrix).
We now have all the terms in Eqs. (32)-~34), so we

can apply the time-optimal control algorithm of Sec-
tion 2.2 to obtain the switching curve.
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For this problem, we used constant torque con-
straints I Tit::;;; Ti .. a.,, as indicated in Fig. 10, with
torque in lb - ft. Figure 10 shows the maximum velocity
and switching curves. Note that the maximum velocity
curve is discontinuous where the tip passes into and
out of the circular arc. This results from the normal
acceleration on the arc suddenly appearing and then
disappearing. Also note that there are five switchings
between maximum acceleration and maximum decel-
eration in this example. The second switch occurs
tangent to the maximum velocity curve after the first
discontinuity. It would probably be impossible to find
these switching points using maximum principle-
based algorithms.

5. Discussion

The preceding results show that the actuator torques
required for a typical optimal trajectory are discontin-
uous functions of time. In practice, the dynamic prop-
erties of the actuators make it impossible to produce
these torques exactly. For typical direct-current motors
used in manipulators, the time constants relating the
input voltage to output torques range from 0.0001 sec
to 0.025 sec (Kollmorgen Corporation 1983), which is
short enough that for most robots these dynamic ef-
fects can be neglected (Bobrow 1982). The open-loop
input voltage that produces the optimal open-loop
torque found with our algorithm can then be com-
puted algebraically. For cases when the actuator time
constant is not small, the actuator input voltage can
be found by solving an optimal linear quadratic track-
ing problem (Kirk 1970). The actuator input voltage
thus calculated will produce an output torque that is as
close as possible to the desired open-loop torque.
Once the open-loop actuator input voltage has been

determined, it should drive the manipulator along the
desired path if the dynamic model’is accurate. How-
ever, in most cases this is not a realistic assumption;
there is always some uncertainty about the values of
the system parameters and unmodeled disturbances.
For this reason it is necessary to apply the open-loop
voltage in conjunction with feedback. Bobrow (1982)
presents a straightforward method for accomplishing
this. The method was tested with a complete dynamic
simulation of the system, including the motor dy-

namics. The results showed that in spite of significant
errors in the manipulator model, the feedback control
did a remarkable job of keeping the manipulator on
the required trajectory.

6. Conclusion

We have presented an algorithm for computing the
actuator torques that will move the manipulator along
a specified pat in minimum time, subject to con-
straints on the torques.
For a specific manipulator, the algorithm requires

that

1. the path of the end-effector, including its ori-
entation, is specified;

2. the joint angles can be calculated in terms of
the position on the path;

3. the dynamic equations of motion for the
manipulator are known;

4. the maximum and minimum torques that can
be produced by each actuator are known as
functions of the joint angles and angular veloci-
ties.

The algorithm is computationally efficient since it
involves the numerical integration of only a second-
order differential equation, and it requires iteration on
only one variable to find the switching curve in the
phase plane. While the method can be used to generate
the optimal open-loop torques, it also gives the optimal
feedback control law for motions along the path in
terms of a switching curve in the phase plane.

Appendix

RULES FOR CONSTRUCTING A SWITCHING CURVE

Before proving rigorously that the algorithm presented
in Section 2 does in fact produce the minimum-time
control, we must state more precisely the rules for
constructing the switching curve. First note that we
can write the second-order differential equation x = g
in first-order form by the relation dX/dt = (dac/dac)
(dx/dt) = g. Thus, the equivalent equations for maxi-
mum acceleration and deceleration are
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Fig. AI. An optimal trajec-
tory with sets of points la-
beled.

When ~ = 0, we can obtain the solution to these dif-
ferential equations by solving x = g and .i = f in place
of Eqs. (Al) and (A2), respectively. Also, as stated
earlier, points on the maximum velocity curve satisfy
the relation f (x, jc) = g(x, x). Let Cm be the set of these
points p:

To construct the optimal trajectory, we will make
the following assumptions:
Hypothesis l: The time required for the manipulator

to move from initial condition xo to final condi-
tion x~ is finite.

Hypothesis 2: There are a finite number of switches
between maximum acceleration and maximum
deceleration.

We then use the following rules for the construction:

Step Al. Generate the solution to the acceleration
equation (A 1 ) from the initial condition (xo, 4)
until the constraint Cm is violated. Let (~ be the
set of points on this trajectory (see Fig. A 1 ); i.e.,

Ca = f p = (x, x): (x, x) are the solution to Eq.
Al) starting from (xo, xa)}.

Step A2. Let

C’ = {p E CQ: the solution of Eq. (A2) emanating
from p intersects Cm.

Fig. A2. Three possible
occurrences of the second
switch.

Let PS~ = min C’ that is, the point in C-’ that has
the smallest value for x. [Note: The method for
choosing Psi requires that the solution Ca touches
but does not violate the constraint Cm.]

Step A3. Generate the solution to the deceleration
equation A2 starting at Pst and ending some dis-
tance beyond the intersection with Cm. Call the
set of points p on this trajectory C~:

Cd = (p = (x, x): (x, ~c) lies on the solution to Eq.
(A2) starting from P,,).

Step A4. The second switch occurs at Ps2, the last
(usually only) point that Cm has in common with
Ca . That is, ps2 satisfies the following two condi-
tions :

where x2 is the position of Ps2 and kc and XCd are
the velocities in Cm and Cd corresponding to posi-
tion x (see Fig. A2).

Step A5. Generate the solution to the acceleration
equation (A 1 ) as in step A 1, but start from Ps2’
Redefine Ca as the set of these points:

Ca = ( p = (x, x): (x, x) are the solution to Eq. (A 1 )
starting from Ps2}’
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Step A6. Repeat the entire process to find more
switch points until the solution goes beyond xf
(see Fig. A 1 ). This will ensure that when (A2) is
solved backward from the final condition, the
solution will cross the trajectory constructed.

PROOF THAT THE CONSTRUCTION GIVES THE
MINIMUM-TIME TRAJECTORY

To prove that it is possible to switch from deceleration
to acceleration at the ps2 found in step A4 without

immediately violating the constraint, we need the fol-
lowing standard result (Birkhoff and Rota 1969, pp.
24-26).
. Theorem 1 Comparison Theorem. Let y and z

be solutions of the differential equations

respectively, where F(x, y) ~ G(x, z) in the strip
a % x % b and F or G satisfies a Lipschitz condi-
tion. Also let y(a) = z(a). Then y(x) -- z(x) for all
.~c E [a, b].

For our problem, the theorem says that for any
position x, the velocity corresponding to the solution
of the deceleration equation (A2) is less than or equal
to the velocity corresponding to the solution of the
acceleration equation (A 1) for the same initial condi-
tion. The theorem is valid in our case because under
the maximum velocity curve, fix < ~/x. Also, f and g
are piecewise continuously dzfferentiable functions of
x, so they satisfy a Lipschitz condition (Birkhoff and
Rota 1969). This can be seen by noting how f and g
were obtained (see Eqs. 15 -19) and observing that it
is possible to differentiate these functions except when
the Jacobian [r~] is singular (these positions are nor-
mally avoided).
We are now able to prove that it is possible to switch

from deceleration to acceleration at ps2 (Fig. A2).

Theorem 2. The solution to dk/dx = g/x starting
at P,2 remains below Cm for some 6 > 0.

Proof First observe that Cd was constructed so
that it continues below Cm. Also, below Cm,
fix < g/~, and above C~,j7-~ ~ ~/~. If the solution
to Eq. (A 1 ) starting from p,2 went immediately

Fig. A3. Switch positions for
the minimum-time proof

above Cm, then by the comparison theorem the
solution to Eq. (A2) would be above that, since
fix> g/X above Cm . This cannot happen since Cd
(the solution to Eq. A2) is below C~. Hence the
solution to the acceleration equation (Al) must be
below Cm for some 6 > 0.

Finally, we will prove that the trajectory constructed
is the minimum-time solution.

Theorem 3. The solution that moves the manipu-
lator from initial condition xo, xo to final condi-
tion xf, xf in minimum time is constructed by
steps A 1-A6.
Proof. Assume first that there are three switches
between acceleration and deceleration, at the
positions XI X2, and x3 (see Fig. A3). In the argu-
ments given below, we have implicitly used the
result that the solutions to Eqs. (A 1 ) and (A2) are
unique. This is true because the functions f (x, x)
and g(x, x) satisfy a Lipschitz condition.
The time for the maneuver is given by t = fxf

dxjx. This integral exists under our hypothesis
that it is possible to move from xo to xf in finite
time. Assume there is another trajectory that gives
a shorter time t = IZ dx/x. Then x > X for some
x < xf. In the first segment, xo < x < Xl’ This
cannot happen because dk/dx < g/x, and, since g
is as large as possible, the comparison theorem
guarantees no higher solution. We can make the
same argument in the last segment by making the
change of variable = xf- x and integrating
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backward from the final condition xI’ xI’ If i > x
for xl < x < x2 in the second segment Cd, then no
solution starting at x, x could go beneath Cd be-
fore violating the constraint Cm, by the rule for
obtaining Cd. Finally, if x > x for some x2 <
x < x3 in the third segment Ca, then this solution
starting at the position corresponding to ps2 must
have a higher velocity since there is no accelera-
tion curve that can cross C~. This is not possible
because the constraint Cm would then be violated.
This completes the proof for three switches.
When there are more than three, the proof that
the intermediate segments are optimal is the same.
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