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a b s t r a c t

Workload estimation and prediction has become a very relevant research area in the field of cloud
computing. The reason lies in its many benefits, which include QoS (Quality of Service) satisfaction,
automatic resource scaling, and job/task scheduling. It is very difficult to accurately predict the workload
of cloud applications if they are varying drastically. To address this issue, existing solutions use either
statistical methods, which effectively detect repeating patterns but provide poor accuracy for long-term
predictions, or learning methods, which develop a complex prediction model but are mostly unable to
detect unusual patterns. Some solutions use a combination of both methods. However, none of them
address the issue of gathering system-specific information in order to improve prediction accuracy. We
propose an Advanced Model for Efficient Workload Prediction in the Cloud (AME-WPC), which combines
statistical and learning methods, improves accuracy of workload prediction for cloud computing
applications and can be dynamically adapted to a particular system. The learning methods use an
extended training dataset, which we define through the analysis of the system factors that have a strong
influence on the application workload. We address the workload prediction problem with classification
as well as regression and test our solution with the machine-learning method Random Forest on both –

basic and extended – training data. To evaluate our proposed model, we compare empirical tests with
the machine-learning method kNN (k-Nearest Neighbors). Experimental results demonstrate that
combining statistical and learning methods makes sense and can significantly improve prediction
accuracy of workload over time.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The area of cloud computing is relatively new and has expanded
considerably in the past few years. Usage of dynamically scalable and
often virtualized computing resources that are available as services
over the Internet have gained a lot of attention from both industry and
academia.

The evolution of cloud computing IT services took a step forward in
the efficient use of hardware resources through the use of virtualiza-
tion. In traditional hosting services the user receives a static amount of
hardware resources. In contrast, the cloud computing approach offers
on-demand virtualized resources to its usersQ4 (Buyya et al., 2009).
Because virtual resources can be added or removed at any time during
the lifetime of the application hosted in a cloud, the possibility of
dynamic scaling arises, along with the need for more advanced
resource management systems (Manvi and Shyam, 2014). For systems
to work seamlessly, decisions about dynamic resource scaling should
be carefully scrutinized – because they are influenced by a lot of

factors (e.g. current state of the system, number of users, projects,
upcoming events and projects such as software development projects
or delivering a service to a customer). These decisions can be
identified on the basis of future workload predictions, which can be
achieved through identification of historical usage patterns, analysis of
historical data or current state of the system. To enable more reliable
decisions about current and future resource scaling, it is important to
establish an effective workload prediction mechanism. Why cannot
resources be increased exactly when we need them to? Why is it
better to have this knowledge in advance? The answer to those
questions relies on the fact that initializing additional virtual resources
in a cloud is not instantaneous – cloud-hosting platforms introduce
several minutes delay in the hardware resource allocation (Islam et al.,
2012), which could cause a lot of inconveniences for the end users
(interruptions, operational costs, utilization of resources, loss of clients,
etc.). Finally, appropriate workload prediction mechanisms would not
only resolve the problemwith the shortage of hardware resources, but
also the problemwith unused resources, which make the cloud costly
and inefficient.

In this research paper we present an Advanced Model for Efficient
Workload Prediction in the Cloud (AME-WPC) which combines
statistical and learning methods. In order to improve capabilities of
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the learning method, we propose domain-specific database exten-
sions, which we define through analysis of the system factors that
have a strong influence on the application workload (e.g. part of day,
holidays and weekends). Additional database extensions are defined
using a novel Two-phase Pattern Matching method (TPM), which
covers two phases: it recognizes similar patterns based on workload
value and similar patterns based on workload fluctuation. TPM can be
repeatedly applied to the most recent historical workload data in
order to regularly improve the prediction model. We address the
workload prediction problem with classification as well as regression
and test our solution with the machine learning method Random
Forest on both – basic (contains only attributes given in source data)
and extended (contains an additional set of attributes) – training data.
Finally, we demonstrate capabilities of AME-WPC on AuverGrid
workload data series, obtained from Grid Workloads Archive (http://
gwa.ewi.tudelft.nl/). For evaluation purposes, we include the machine-
learning method kNN. Experimental results demonstrate that the use
of combined methods significantly improves prediction accuracy of
workload over time.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 defines a problem domain and presents data
collection and processing. The proposed model is highlighted in
Section 4, which is followed by experimental results in Section 5.
Section 6 discusses the conclusion of the work presented.

2. Related work

Methods for ensuring efficient workload prediction in the cloud
have yet to be addressed in a way comparable to the approach
proposed in this paper. Workload of infrastructure resources can be
presented as a time series, which is a sequence of data points typically
measured at successive points in time spaced at uniform time
intervals. Time series forecasting relies on a model to predict future
values based on previously observed values. There are many existing
research studies on this topic and researchers have addressed this
problem by leveraging different approaches.

2.1. Statistical methods

One group of methods that is often used for predicting time series
is statistical methods (Quiroz et al., 2009; Mentzer and Moon, 2004;
Ganapathi et al., 2010), which cover the identification of similar past
occurrences with the current short-term workload history (i.e. pattern
matching) (Caron et al., 2010a,b, 2011; Gmach et al., 2007; Liu et al.,
2011), autoregression (AR) model (Li et al., 2011; Li, 2005), Monte Carlo
(Vercauteren and Aggarwal, 2007), Moving Average (MA) model
(Ardagna et al., 2012), Exponential Smoothing (ES) (Kalekar, 2004),
Autoregressive Integrated Moving Average (ARIMA) (Zhang et al.,
2009; Roy et al., 2011; Doulamis et al., 2007; Kalantari and Akbari,
2009; Cortez et al., 2012), Linear Regression and Quadratic Regression
(Sun et al., 2013; Yang et al., 2014) and Hidden Markov Model (HMM)
(Khan and Anerousis, 2012; Li and Cheng, 2010; Gong et al., 2010). For
short-term predictions and estimation of predicted values, filters such
as Kalman's (Kalantari and Akbari, 2009; Cortez et al., 2012) are often
used. Furthermore, some of the researchers focus on extracting the
small number of trends from historical data that will be most useful to
a resource management system (Bacigalupo et al., 2010, 2004, 2005;
Bacigalupo, 2006). Moreover, Sarikaya et al. (2010) propose a Statistical
Metric Model (SMM) that is system and metric independent for
predicting workload behavior. A different solution to a workload
prediction problem was presented by Wu et al. (2010), who proposed
a model for grid performance prediction. They applied Savitzky–Golay
filter to train a sequence of confidence windows and used Kalman
filters to minimize prediction errors.

Thus, statistical methods have been successfully used for short-
term predictions. Furthermore, HMMs are not a good fit for the
time series predictions, since they are used mostly for predicting
the labels (hidden states) of a fully observed sequence, not for
completing a sequence. More reliable decisions about long-term
future workloads are often made based on a complex prediction
model, which uses machine-learning methods.

2.2. Learning methods

As previously mentioned, the problem with statistical methods is
poor accuracy particularly with long-term forecasting. This means that
erratic fluctuations, that are typical for time series, are practically
impossible to predict. This problem can be resolved with the use of
machine-learning methods such as k Nearest Neighbors (kNN),
Regression Tree, variations of neural networks (Frank et al., 2001;
Chen et al., 2005; Donate et al., 2013; Eddahecha et al., 2013; Chang
et al., 2014), Support Vector Machine (SVM) (Cao, 2003) and many
others (Chen et al., 2005; Donate et al., 2013; Saadatfar et al., 2012).
Advantages of these methods are that they learn from historical data
(search connections among attributes) and build a model that is used
for predicting future values. Variations of neural networks (NN) have
been used widely for time series predictions. As mentioned, NNs can
be accurate prediction models, but are time-consuming and complex.
On the other hand, simple machine-learning methods such as Naïve
Bayes and Linear Regression do not perform with sufficient accuracy
for complex and non-linear problems such as time series predictions.

The machine-learning method kNN was used for time series
prediction by various researchers (Troncoso Lora et al., 2004;
Imandoust and Bolandraftar, 2013; Ban et al., 2013). The main idea
of the kNN technique for pattern classification is based on the
similarity of the individuals. It classifies objects based on closest
training examples in the feature space. In a similar way, our approach
searches for patterns in existing training datasets, but with our own
pattern-matching technique TPM. Similar patterns are determined
based on two phases – value and fluctuation. In contrast to kNN, our
approach extends training dataset based on the results of TPM, which
identifies the most similar time-points in the historical workload and
produces additional attributes. Furthermore, our approach applies
confidence factors to the Random Forest predictions, which improves
confidence in the predicted values.

2.3. Hybrid methods

In order to achieve better workload prediction accuracy, the
following researchers used a combination of statistical and machine-
learning methods. Montes et al. (2011) propose an approach that
combines the use of the machine-learning prediction techniques with
a single entity vision of the grid in order to improve the management
of the whole system. Furthermore, Vercauteren and Aggarwal (2007)
propose a solution to the web server load prediction problem based
on a hierarchical framework. Li et al. (2011) present an integrated
approach that employs three-layered resource controllers using dif-
ferent analytic techniques, including statistical machine learning.
Moreover, Li (2005) proposes a hierarchical framework for modeling
workload. Zhang (2003) proposes a hybrid methodology that com-
bines both ARIMA and ANN models. Moreover, Cortez et al. (2012)
present threemethods for traffic forecasting in TCP/IP based networks:
a neural network ensemble method, ARIMA and Holt–Winters. Frank
et al. (2001) use neural networks as time series predictors, which
employ a sliding window over the input sequence. Imam and Miskhat
(2011) present time delay neural networks and regressionmethods for
predicting future workloads in the grid or cloud platform. In similar
way, Islam et al. (2012) develop prediction-based resource measure-
ments and provisioning strategies using neural network and linear
regression to satisfy upcoming resource demands.
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Machine-learning methods are more reliable for long-term work-
load predictions and can, in combination with statistical methods,
provide more accurate workload predictions. Furthermore, it is impo-
rtant that we provide as much information about the addressed
system as possible and extract additional features that have an infl-
uence on workload value, which can significantly improve the
performance of both statistical and machine-learning methods.

Table 1 presents a comparison between our approach and existing
hybrid solutions. The main drawback of existing solutions is the lack of
information about the addressed system. This information would
significantly improve the performance of either statistical or machine
learning methods. Moreover, we strongly believe that combining
statistical and learning methods is reasonable, as it provides the
advantages of both sides. Training data, which presents the most
important part of prediction with machine learning, should be
extended with appropriate features. For this purpose we developed
our own Two-phase Pattern Matching (TPM) method, which extracts
significant features out of historical data. AME-WPC can be dynami-
cally adapted to a specific system. After a certain period of time,
learning datasets can be redefined based on most-recent historical
workload data in order to further improve prediction accuracy of the
prediction model. Furthermore, we apply confidence factors for
achieving more reliable predictions. We address the challenges of
poor prediction accuracy by building an Advanced Model for Efficient
Workload Prediction in the Cloud (AME-WPC).

3. Problem definition and data collection

3.1. Problem definition

Our goal is to improve prediction accuracy of system workloads in
order to improve automatic scaling of cloud resources. Automatic
resource scaling enables the system to automatically increase or
decrease the amount of infrastructure resources depending on the
past, current and future needs. This is useful especially when we need
to react quickly in the case of shortage of hardware resources. The
time difference between sending the request and the actual acquisi-
tion is minimal but not instant and can consequently lead to serious
performance and capacity bottlenecks.

The problem of workload prediction can be resolved in several
ways. The most common solution is the use of historical workload
data for planning the future workload of the system. Maximum or
average loads can be observed for specified time intervals.

However, such methods are very general and do not give accurate
predictions. If we consider maximum workloads, resources will be
unused most of the time. On the other hand, if an average
workload is taken into account, there will be a lack of resources
(and performance will decrease) when workload increases. These
kinds of prediction methods are considered to be poor because
they are not accurate enough and correspond to a very small
number of cases (Roy et al., 2011).

The problem of workload prediction can be resolved more
efficiently by using appropriate machine-learning methods,
assuming that a historical record of workload is available for a
specified period of time in the past. A major focus of research in
the field of machine learning is to automatically learn to recognize
complex patterns and make intelligent decisions based on existing
data. A prediction model can be built by mining the data in the
training window (i.e. historical workload data) and use it to
predict the workload throughout a prediction window (i.e. testing
data). Figure 1 shows training and prediction windows.

3.2. Data collection and preprocessing

The first thing to consider when trying to build a prediction model
is data. We obtain our training data from the Grid Workloads Archive
(http://gwa.ewi.tudelft.nl/), which offers several different workload
traces and is widely adopted in the academic research field. Because
we need a historical workload trace in order to build a prediction
model, we choose the AuverGrid trace (http://gwa.ewi.tudelft.nl/
datasets/gwa-t-4-auvergrid), since it provides the most complete data
for the given attributes. These traces were provided by the AuverGrid
team, the owners of the AuverGrid system.

The AuverGrid contains traces of job records collected during
12 months, from January 1 to December 31, 2006 (Fig. 2). Although
the total number of 29 attributes is defined, some attributes are
unavailable or partially available due to the limitations in the
environment. The most useful attributes for us are submission time,
wait time, run time and the number of processors used for each job.
Based on these attributes we transformed the original data into a
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Table 1
Comparison of existing approaches.Q9

Statistical
approach

Learning
approach

Feature
extraction

Confidence
factors

AME-WCA

Caron et al. (2010a, b, 2011), Ardagna et al. (2012), Kalekar (2004), Zhang (2003), Roy et al. (2011), Bacigalupo
et al. (2004, 2005, 2010, 2011); Bacigalupo (2006), Khan and Anerousis (2012), Li and Cheng (2010), Gong
et al. (2010), Sarikaya et al. (2010), Sun et al. (2013), and Yang et al. (2014)

Gmach et al. (2007) and Doulamis et al. (2007)

Liu et al. (2011), Kalantari and Akbari (2009), and Wu et al. (2010)

Li et al. (2011), Li (2005), Zhang et al. (2009), Cortez et al. (2012), Frank et al. (2001), Imam and Miskhat (2011),
and Islam et al. (2012)

Montes et al. (2011)

Vercauteren and Aggarwal (2007)

Chen et al. (2005), Donate et al. (2013), Eddahecha et al. (2013), Chang et al. (2014), Troncoso Lora et al. (2004),
Imandoust and Bolandraftar (2013), and Ban et al. (2013)

Cao (2003) and Saadatfar et al. (2012)

Fig. 1. Training and prediction windows.
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time series that contain workload values recorded for each second
in an entire time interval (12 months). We define workload as the
amount of processors needed at a certain time. In order to create a
time series, we developed a method in GNU Octave (Eaton, 2002),
which transforms all logged jobs into a time series. GNU Octave is
a high-level interpreted language primarily intended for numerical
computations. The data is sub-sampled so that workload values
are acquired only four times in an hour (every 15 min). The latter
is required in order to make our model less computationally
complex. The file is in a ‘.TAB’ format, which is required when
using machine-learning libraries such as Orange (Demšar et al.,
2013). This presents our basic dataset, which we structure into
training and testing sets. Figure 3 presents a part of our training
dataset with basic attributes: date (month and day), time (hour and
minute) and workload. Extended datasets, which contain addi-
tional attributes, will be defined later onQ5 (Fig. 4).

In machine learning, problems can be approached either with
classification or regression. The difference is in output variable values:
regression involves estimating or predicting a response and classifica-
tion identifies group membership. We address workload prediction
problemswith both regression and classification in order to determine
which method is more appropriate for our problem domain. Because
the number of classes in our training data is too large, we transform
the workload attribute to a different scale in order to use the
classification approach. For the purpose of testing, data is transformed
into a group of 11 classes and a group of 17 classes. We determine the
number of classes based on the most appropriate division of the
original data. In the next step, we divide our data into learning and
testing sets. Learning data is divided into 3-, 5- and 7-month intervals
and the testing data into 24-h intervals. We chose one-day interval
predictions because in this case, it is neither realistic nor useful to
predict further into the future. If the system is unpredictable and
workload fluctuates regularly, the number of daily predictions should
be properly adjusted.

4. The proposed model

In this section, we first present an overview of the AME-WPC. Our
model consists of six steps (Fig. 5). In Step 1, we first analyze and
obtain historical workload records (time series). Step 2 features
extraction by leveraging our novel Two-phase Pattern Matching

(TPM) method and attribute scoring. Additional features are extracted
and scored from historical workload data (i.e. part of day, weekends)
(Step 3). Then we divide our data into different training and testing
sets (Step 4), which we use with the Random Forest method (Step 5).
Finally, confidence factors are applied to workload predictions (Step 6)
in order to achieve more reliable results. The following subsections
present each part of our model in detail.

4.1. Analysis of time series

We can determine periodicity of the time series with the use of
autocorrelation, which represents a cross-correlation of a signal with
itself. Autocorrelation shows the similarity between observations as a
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Fig. 2. AuverGrid job traces.

Fig. 3. Basic training dataset.
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function of the time lag between them and is a mathematical tool for
finding repeating patterns such as the presence of a periodic signal
obscured by noise, or identifying the missing fundamental frequency
in a signal implied by its harmonic frequencies.

Randomness of a time series can be verified with a lag plot, which
checks whether a data set or time series is random. Lag plots can be
generated for any arbitrary lag, although the most commonly used lag
is 1. A plot of lag 1 is a plot of the values of Yi versus Yi�1. This means
that the vertical axis is Yi for all i and the horizontal axis Yi�1 contains
for all i. Random data should not exhibit any identifiable structure on
the lag plot. Non-random structures in the lag plot indicate that the
underlying data are not random.

Before making a decision about which model to use and which
features to include in the learning dataset, it is useful to check for
periodicity, randomness and similar characteristics of the observed
signal. Thus, according to the analysis of periodicity and randomness,
which indicates whether a signal contains certain characteristics, we
continue with feature extraction.

4.2. Feature extraction

We analyze our training dataset with a Two-phase Pattern
Matching (TPM) method that we have developed with the use of
Python programming language. The main objective is to find
similar patterns to those in the historical data – we want to
determine when in the past similar fluctuations and workload
values have been recorded. Similarity is defined based on a value
of the workload, as well as fluctuation of the pattern (whether the
workload is rising, dropping or stable). First we find similar values
for specific time interval and then select only those intervals that
have high fluctuation similarities. We consider a 24-h time interval
because our prediction will be for one day ahead. Pseudo-code of
algorithms for value similarity and fluctuation similarity is shown
below (Algorithms 1 and 2).

Algorithm 1. Method 1: Returns' patterns with corresponding
values.

Require: sptr’sample pattern
Require: allptr’historical data
for all 1-day patterns 1dayptr in allptr do

compare same position element values (x and y) of 1dayptr
and sptr
set assessment s for 1dayptr to 0
if x¼ ¼ y then
increase assessment for 1dayptr by 1

else
increase assessment for 1dayptr with a number

proportional to the error
end if

end for
return patterns with the largest assessments

Algorithm 2. Method 2: Returns' patterns with corresponding
fluctuations.

Require sptr’sample pattern
Require alg1res’result of Algorithm 1
for all 1-day patterns 1dayptr in alg1res do

compare two sequential, same position elements (x1, x2)
and (y1, y2) from 1dayptr and sptr
set assessment s for 1dayptr to 0
set difference d1¼ x1�x2 and d2¼ y1�y2
set values for error factors err1 and err2
if d1o0 then
set direction dr1¼ 1

else if d1¼ ¼ 0 then
set direction dr1¼ 0

else
set direction dr1¼ �1

end if
if d2o0 then
set direction dr2¼ 1

else if d2¼ ¼ 0 then
set direction dr2¼ 0

else
set direction dr2¼ �1

end if
if dr1¼ ¼ dr2 then
increase assessment for 1dayptr by 1

else if ðdr1�dr2Þ ¼ ¼ 1 OR ðdr1�dr2Þ ¼ ¼ �1 then
increase assessment for 1dayptr by err1

else
decrease assessment for 1dayptr) by err2

end if
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Fig. 4. Classification of workload in 11 and 17 classes.

Fig. 5. Prediction model.
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end for
return patterns with the largest assessments

With analysis of historical data through TPM, we are able to
obtain relevant information about connections among current and
historical data. In such a manner, we collect additional attributes
for our training dataset, which will be used as a learning set for the
machine-learning method hereinafter.

4.3. Attribute scoring

We perform attribute scoring by leveraging Orange's (Demšar
et al., 2013) built in scoring method, which is based on the feature
selection algorithm Relief (Kononenko, 1994). The latter is considered
one of the most successful algorithms for assessing the quality of
features due to its simplicity and effectiveness. Feature scoring is an
assessment of the usefulness of the feature for prediction of the
dependent (class) variable. Orange, which is an open source data
visualization and analysis tool that also provides data mining through
Python scripting, provides various feature scoring methods for classi-
fication as well as regression. With the help of Orange's generalized
scoring method, we identify different sets of attributes for classifica-
tion and regression data. Orange's scoring method calculates scores for
each individual attribute, where a larger value means that the
attribute is more important for an accurate output of a machine-
learning method and a lower value means that the attribute is less
important (or unnecessary) for an accurate value of a machine-
learning method. Orange's scoring method has an option to auto-
matically determine the top n candidates out of the provided
attributes. In our case, n was limited to 6 after performing tests with
different values of n.

4.4. Training and testing datasets

Both training datasets (basic and extended) are divided into three
different datasets according to the time intervals (3, 5 and 7 months)
in order to verify whether larger datasets contribute to a more
accurate prediction model. We perform workload predictions one
day in advance, because long-term forecasts have no specific relevance
within the domain of automatic resource scaling.

4.5. Random forest method

When a large amount of data should be analyzed in order to
extract trends, similarities and patterns, machine learning can be a
good choice. Some machine-learning methods (e.g. Support Vector
Machines and Random Forest) can work directly with high-dim-
ensional datasets such as time series. We use Random Forests, since it
is one of the most successful ensemble methods that exhibits
performance on the level of boosting and support-vector machines.
The method is fast, robust to noise, does not overfit and offers
possibilities for explanations and visualization of its output (Robnik-
Šikonja, 2004). Random Forests are a combination of tree predictors
such that each tree depends on the values of a randomvector sampled
independently and with the same distribution for all trees in the forest
(Breiman, 2001). We develop and test the prediction model using the
Random Forest method in the PythonWin environment using Python
programming language with Orange (Demšar et al., 2013) and Scipy
(Jones et al., 2001) libraries.

4.6. Confidence factors

To further improve our model, we add confidence factors to
predictions in order to make them more reliable. Confidence factors
are specified on the basis of an actual prediction value and Random

Forest classifier probabilities of an individual class. Highest probabil-
ities from Random Forest classifiers are summed with an additional
value added based on the highest probability class. This factor is then
multiplied with original values of Random Forest predictions.

Figure 5 presents all parts of our prediction model with their
connections. For a successful learning process, quality training
data is very important. To improve the accuracy of the prediction,
we extend our basic training dataset (historical workload data),
which contains the attributes of date, time and workload, with
additional attributes that we identify through the analysis of the
historical workload data. Our pattern-matching method identifies
similar historical patterns which are included as additional attri-
butes and significantly contribute to a better prediction accuracy
which we prove through various tests in the next section.

5. Testing and results

In this section we analyze historical workload data according to
our model presented in the previous section. We perform tests on
various testing and training datasets as specified below. Finally,
results are presented in the form of prediction errors and visual
representations (graphs).

5.1. Historical data analysis

Before making the decision about which model to use and
which features to include into learning dataset, it is useful to check
for different characteristics of the observed signal (e.g. periodicity,
randomness and others).

5.1.1. Autocorrelation and randomness
Autocorrelation is a mathematical tool for finding repeating

patterns such as the presence of a periodic signal obscured by
noise. A correlogram shows the ACF (Autocorrelation Function) of
a signal at different lags. The X-axis of the plot represents the lag
in minutes, while the Y-axis represents the value of an autocorre-
lation. Figure 6 shows the correlogram of our workload signal.
Note that with the exception of lag 0, which is always 1 by
definition, almost all of the autocorrelations fall outside the 95
percent confidence limits (gray horizontal lines above and below
zero autocorrelation). The lags slightly outside the 95 percent -
confidence limit do not necessarily indicate non-randomness. For
a 95 percent confidence interval, we may expect about one out of
20 lags to be statistically significant due to random fluctuations.
Statistical significance implies non-randomness and strong peri-
odicity of the signal.

We can see that autocorrelation coefficients for our signal are not
only completely random, but also do not have high autocorrelation
values, which means that the corresponding workload does not have
strong periodicity – autocorrelation is weak. This is to be expected for
time series signals, since fluctuations can be very difficult to interpret.
We have to find other factors to help determine future workload
values.

Randomness of a time series can be verified with a lag plot, which
checks whether a data set or time series is random. Our lag plot
exhibits a linear pattern (Fig. 7). This shows that the data is strongly
non-random and further suggests that an autoregressive model may
be appropriate. However, this would be useful only for short term
predictions. This means if we know Yi�1 we can make a strong guess
about the value of Yi. This prediction could be used for ongoing
verification and adjustment of rough long-term predictions.

5.1.2. Feature extraction
We have applied the Two-phase Pattern Matching method to

our historical workload data. The results of TPM have shown that
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there is a strong correlation among current workload and histor-
ical workload for four specific time intervals (att1, att2, att3, att4).
These attributes are continuous and represent workload values at
a certain time in the past. att1 presents workload 1 day ago, att2
9 days ago, att3 11 days ago and att4 18 days ago. More distant
attributes (greater than one month) were not considered because
that would result in a larger learning dataset or smaller learning
dataset with missing values. Aside from that, we have identified
two discrete attributes – partofday and weekend. The first specifies
part of the day (1-night, 2-morning, 3-afternoon and 4-evening)
and the second tells whether it is a weekend (1-weekend and 0-
working day). Because the large number of attributes can nega-
tively affect the behavior of machine-learning methods, the next
step is to evaluate each identified attribute and choose only those
that contribute the most (i.e. have the highest assessments).

5.1.3. Attribute scoring
For classification, the scoring method eliminated the weekend,

part-of-day, att2 and att4 attributes, due to their low classification
scores. For regression, the scoring method eliminated part-of-day,
att2, att4 and minute because they had the lowest scores of all
regression attributes. As a result we obtained updated training
datasets with additional attributes for both methods (classification
and regression), which will be used for testing the machine-
learning method.

5.1.4. Datasets
We label the learning datasets as ti1, ti2 and ti3. The first dataset

includes 8600 learning cases (approx. 3 months), the second database
includes 14,500 learning cases (approx. 5 months) and the third one
includes 20,000 cases (approx. 7 months). Workload prediction is
performed one day ahead (24 h). Within each learning dataset (3,
5 and 7months) we perform test on 3 different testing datasets – day-
1, day-2 and day-3. Day-1 represents testing dataset for the day
following the last day of the adequate training dataset. Day-2
represents testing data for the day after day-1 and day-3 for the day
after day-2.

5.2. Evaluation of results

For the purpose of comparing prediction results of different
datasets, we compute mean squared prediction errors.

In statistics, the mean squared error (MSE) of an estimator
measures the average of the squares of the difference between the
estimator and what is estimated (predicted):

MSE¼ 1
n

X
ðŶ i �YiÞ2 ð1Þ

In our case, the random variable Y presents true values and the
random variable Ŷ presents predicted values. Figure 8 presents pre-
diction errors, which were computed based on the aforementioned
equation for MSE. Symbol n presents the number of observed
instances. Additionally, we also computed normalized MSE's, which
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Fig. 6. Correlogram of our time series.

Fig. 7. Lag plot of our time series.
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were adjusted by MSE values measured on different scales due to
different number of classes (regression and classification with differ-
ent number of classes), to a notionally common scale. The following
equation presents the formula for a normalized MSE:

NMSE¼ 1
nnm

X
ðŶ i �YiÞ2 ð2Þ

where m stands for the number of classes, with either 11 or 17 in the
case of classification or 170 in the case of regression.

We perform the following tests. For training data from 3, 5 and
7 months (ti1, ti2 and ti3) we perform tests for the one-day-ahead
prediction (24 h) for both basic and extended training datasets. If
we look at the error numbers for 3 months of training data in Fig. 8
we see that regression (marked as Reg in the table) did not
perform satisfactory enough for our model. Both classification
methods outperformed our model, which is why we decided to
rule out the regression method and try to further improve both
classification methods.

To further improve our classification methods, we add confidence
factors to predictions in order to make themmore reliable. Confidence
factors are specified on the basis of an actual prediction value and
Random Forest classifier probabilities of individual classes. Highest
probabilities from Random Forest classifiers are summed with an
additional value added based on the highest probability class. These
factors are then multiplied with original values of Random Forest
predictions (Algorithm 3).

Algorithm 3. Computed highest probability class from the Ran-
dom Forest class probabilities.

Require: train’training dataset
Require: test’testing dataset
set forest¼Orange.ensemble.forest. RandomForestLearner
(train)

for all instance in test do
set iclass¼ instance:get_classðÞ:value
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Fig. 8. Tables show MSE's and NMSE's of methods Clas1_A (Classification method with 17 classes on extended training data), Clas1_B (Classification method with 17 classes
on basic training data), Clas2_A (Classification method with 11 classes on extended training data), Clas2_B (Classification method with 11 classes on basic training data),
Reg_A (Regression with values 0–170 on extended training data) and Reg_B (Regression with values 0–170 on basic training data) mark on different training data: (a) 3
month time interval; (b) 5 month time interval; and (c) 7 month time interval.
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set probabilities¼ forest (instance, Classifier.GetProbabilities)
compute highest probability class for each instance

end for
return highest probability class for each instance

Experimental tests prove that confidence factors additionally
improve our model, which clearly show visual presentations –

actual workload values are more similar to the Random Forest
prediction values with added confidence factors than to the
Random Forest prediction values without confidence factors.

MSE values show that the larger size of the learning dataset does
not considerably improve prediction accuracy, meaning that 3 months
of training data is enough for making accurate predictions.

The graphs in Fig. 9 show prediction results for the basic
prediction method (blue dotted line). This is a Random Forest that
uses basic training data (only attributes from original dataset). Red
dotted line presents the extended prediction method – this is
Random Forest using extended training data with confidence
factors. Graphs show Random Forest prediction values without
confidence factors as well (orange dotted line). Predicting work-
load with a Random Forest tested on basic training dataset is
significantly worse compared to our approach. The latter can be
concluded from the error table as well as graphs.

Thus, some methods indicate that the first few hours can be
predicted fairly accurate, which can be seen from visual presenta-
tions of predictions. This is to be expected because workload
values from a short time period in the past are the most helpful
information for predicting future values.

To pursue this further, the classification method with 11 classes
(marked as Clas2) gives less errors. If we look at the visual presenta-
tion (Fig. 9) where an actual prediction curve is shown, the classifica-
tion method with 11 classes also gives more useful results as far as
critical peak workloads. In this case, fluctuations of the predicted
workload are closer to those of the actual workload. We have to
consider fluctuation as well because it is very important when
building a model for preventing the lack of system resources. This
means that the classification method with 11 classes would be more
appropriate for our model.

Furthermore, we compare our prediction model with the
machine-learning method kNN, which is already implemented in
the Orange library (Demšar et al., 2013) for Python. We perform
tests with different values of kNN's parameter k in the range
between 2 and 30. Due to the most accurate prediction results, we
set parameter k to 10. The graphs in Fig. 9 show prediction results
for the extended prediction method – this is a Random Forest
using extended training data (red dotted line) and the kNN
prediction method using basic training data (green dotted line).

Tests were made on two different approaches (Clas1 and Clas2)
and three different training datasets (3, 5 and 7 months of training
data). Predictions made with kNN failed on all training and testing
datasets. As is seen from the graphs in Fig. 9, kNN predictions are
very unreliable and deviate significantly from the true values. We
can then conclude that predicting workload with kNN is not
suitable for our observed system.

With experimental results on different training and testing data,
we have shown that the use of AME-WPC, which considers our own
pattern matching method (TPM) and Random Forest classifier with
extended training dataset and confidence factors result in better
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Fig. 9. Advanced Random Forest prediction with added confidence factors versus basic Random Forest prediction and advanced Random Forest prediction without
confidence factors for the next 24 h on training data ti1 (day 3), ti2 (day 1) and ti3 (day 2). Clas1 represents classification with 17 classes and Clas2 classification with 11
classes: (a) 3 months, Clas1; (b) 5 months, Clas1; (c) 7 months, Clas1; (d) 3 months, Clas2; (e) 5 months, Clas2; and (f) 7 months, Clas2.
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prediction accuracy compared to the use of basic training datasets and
the basic prediction methods. Results were presented in the form of
MSE's, NMSE's (Fig. 8) and graphs (Figs. 9 and 10) show that prediction
accuracy of our proposed model outperforms the basic Random Forest
and kNN methods significantly.

6. Conclusion and future work

We believe that the more knowledge we have about the cloud
system, the more precisely we can predict its future behavior. It is
therefore necessary to consider historical workload, the type of
data that describes system resources, connections among this data
and the current state of the system (workload), upcoming events,
projects and other factors that influence on the system workload.

In this research paper we presented an Advanced Model for
Efficient Workload Prediction in the Cloud (AME-WPC), which com-
bines statistical and learning methods. In order to improve the
capabilities of the learning method, we proposed domain-specific
database extensions, which we defined through analysis of the system
factors that have a strong influence on the application workload (e.g.
part of day, holidays and weekends). Additional database extensions
were defined using a novel Two-phase Pattern Matching method
(TPM). TPM covers two phases: it recognizes similar patterns based on
workload value and similar patterns based on workload fluctuation.
We addressed the workload prediction problem with classification as
well as regression and tested our solution with the machine-learning
method of Random Forest on both – basic and extended – training

data. Finally, we evaluated our proposed model capabilities on the
AuverGrid workload data series, which we obtained from the Grid
Workloads Archive (http://gwa.ewi.tudelft.nl/). For evaluation pur-
poses, we included the machine-learning method kNN. Experimental
results demonstrated that the use of TPM and Random Forest with
extended learning datasets significantly improve prediction accuracy
of workload over time. Thereby, our approach can be considered
efficient in terms of enabling better resource management and
optimal service provisions which result in lower operational costs
and a more stable environment.

As part of our future work, we intend to improve our prediction
model while developing an advanced model for automatic
resource scaling that will make scaling decisions based on a
predicted workload. Additionally, we will include detection of
events that are considered to influence workload fluctuations. In
addition, AME-WPC can be dynamically adapted after a certain
period of time through a redefined learning dataset based on
most-recent historical workload data in order to further improve
prediction accuracy of the model. As a result, we will implement a
prototype system whose performance will be tested in real-world
scenarios. We believe that the introduction of such systems can
bring the automation of cloud management to a whole new level.
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