Stability of Columns

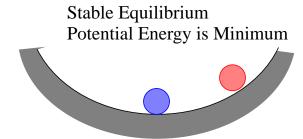
- Bending due to a compressive axial load is called Buckling.
- Structural members that support compressive axial loads are called Columns.
- Buckling is the study of stability of a structure's equilibrium.

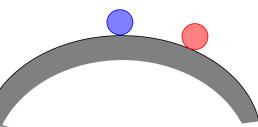
Learning objectives

- Develop an appreciation of the phenomena of buckling and the various types of structure instabilities.
- Understand the development and use of buckling formulas in analysis and design of structures.

Buckling Phenomenon

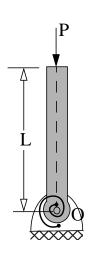
Energy Approach

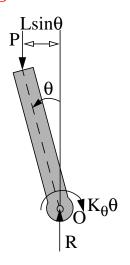




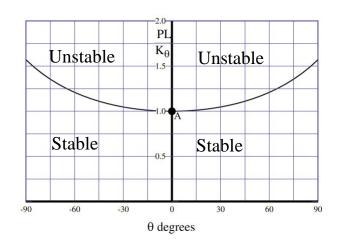
Neutral Equilibrium

Bifurcation/Eigenvalue Problem



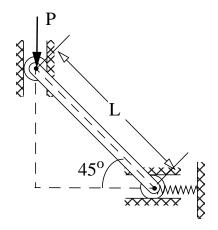


$PL/K_{\theta} = \theta/\sin\theta$

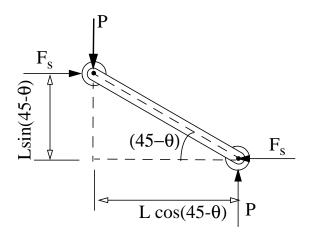


Snap Buckling Problem

$$\theta = 0$$



$$0 < \theta < 45^{\circ}$$



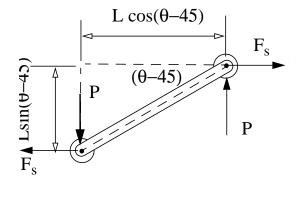
$$\frac{P}{K_L L} = (\cos(45 - \theta) - \cos 45)\tan(45 - \theta) \qquad 0$$

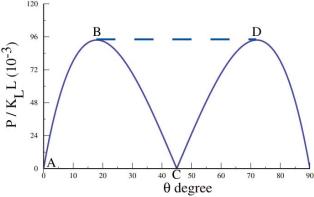
$$0 < \theta < 45^{\circ}$$

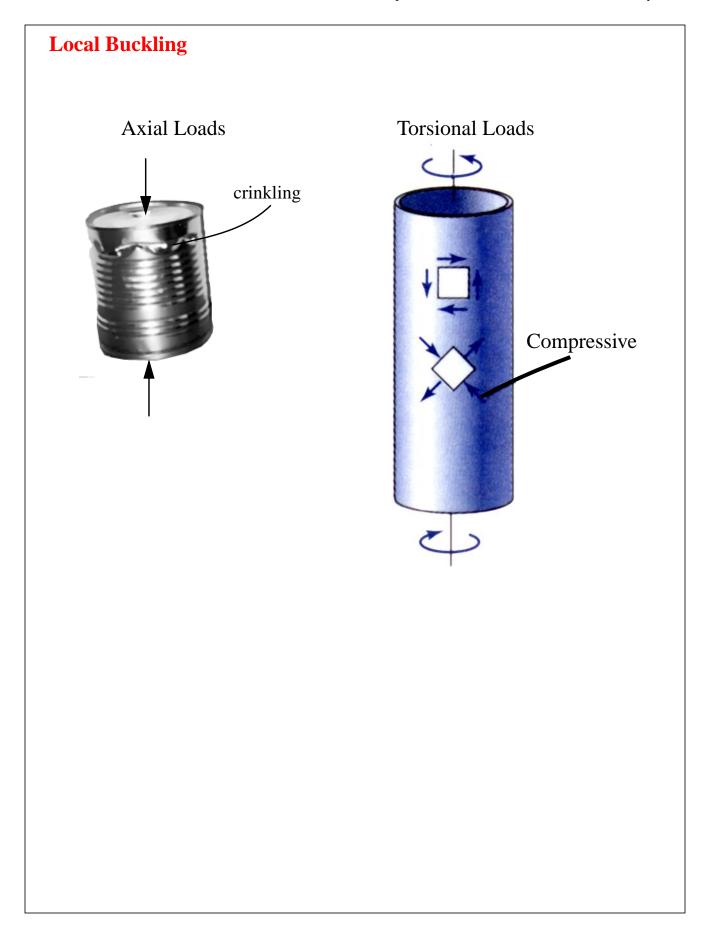
$$\frac{P}{K_L L} = (\cos(\theta - 45) - \cos 45)\tan(\theta - 45)$$

$$\theta > 45^0$$

$$\theta > 45^0$$

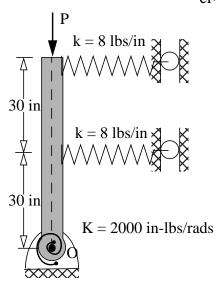




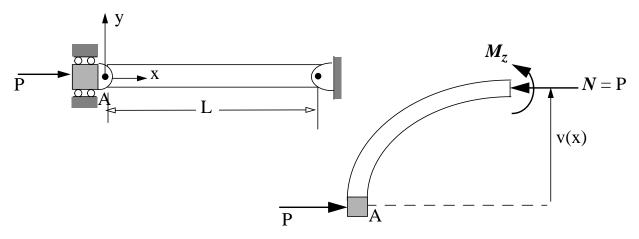


11.5 Linear deflection springs and torsional springs are attached to rigid bars as shown. The springs can act in tension or compression and resist rotation in either direction. Determine P_{cr} , the critical load value.

Mechanics of Materials: Chapter 11



Euler Buckling



Boundary Value Problem

Differential Equation: $EI_{zz}\frac{d^2v}{dx^2} + Pv = 0$

Boundary conditions: v(0) = 0 v(L) = 0

Solution

Trivial Solution: v = 0

Non-Trivial Solution: $v(x) = A\cos \lambda x + B\sin \lambda x$

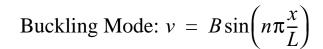
where: $\lambda = \sqrt{\frac{P}{EI_{zz}}}$

Characteristic Equation: $\sin \lambda L = 0$

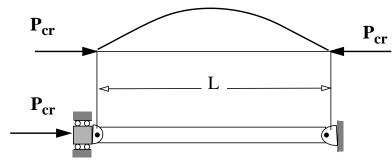
$$P_n = \frac{n^2 \pi^2 E I_{zz}}{L^2}$$
 $n = 1, 2, 3.$

Euler Buckling Load: $P_{cr} = \frac{\pi^2 EI}{L^2}$

• Buckling occurs about an axis that has a minimum value of I.

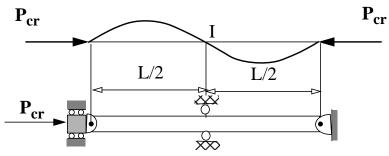


Mode shape 1



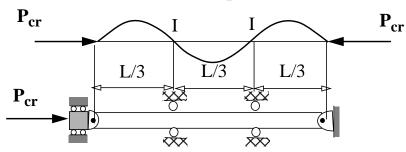
$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

Mode shape 2



$$P_{cr} = \frac{4\pi^2 EI}{L^2}$$

Mode shape 3



$$P_{cr} = \frac{9\pi^2 EI}{L^2}$$

Effects of End Conditions

			:	
Case	1. P B A A Pinned at both Ends	One end fixed, other end free	3. One end fixed, other end pinned	Fixed at both ends.
Differential Equation	$EI\frac{d^{2}v}{dx^{2}} + Pv = 0$	$EI\frac{d^{2}v}{dx^{2}} + Pv = Pv(L)$	$EI\frac{d^{2}v}{dx^{2}} + Pv = R_{B}(L-x)$	$EI\frac{d^{2}v}{dx^{2}} + Pv = R_{B}(L-x) + M_{B}$
Boundary Conditions	v(0) = 0 $v(L) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$ $\frac{dv}{dx}(L) = 0$
Characteristic Equation $\lambda = \sqrt{\frac{P}{EI}}$	$\sin \lambda L = 0$	$\cos \lambda L = 0$	$ tan \lambda L = \lambda L $	$2(1 - \cos \lambda L) - \lambda L \sin \lambda L = 0$
Critical Load P _{cr}	$\frac{\pi^2 EI}{L^2}$	$\frac{\pi^2 EI}{4L^2} = \frac{\pi^2 EI}{(2L)^2}$	$\frac{20.13EI}{L^2} = \frac{\pi^2 EI}{(0.7L)^2}$	$\frac{4\pi^2 EI}{L^2} = \frac{\pi^2 EI}{(0.5L)^2}$
Effective Length— L _{eff}	L	2L	0.7L	0.5L

$$P_{cr} = \frac{\pi^2 EI}{L_{eff}^2}$$

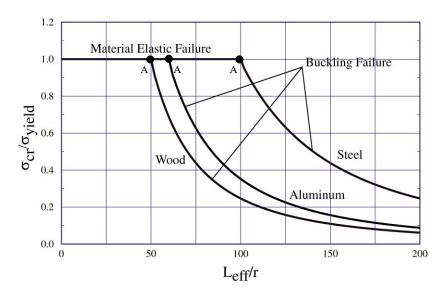
Axial Stress:
$$\sigma_{cr} = \frac{P_{cr}}{A}$$

Radius of gyration: $r = \sqrt{\frac{I}{A}}$

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E}{(L_{eff}/r)^2}$$

Slenderness ratio: (L_{eff}/r) .

Failure Envelopes



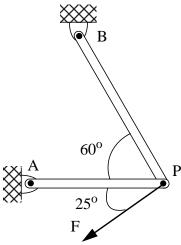
- Short columns: Designed to prevent material elastic failure.
- Long columns: Designed to prevent buckling failure.

11.13 Columns made from an alloy will be used in a construction of a frame. The cross-section of the columns is a hollow-cylinder of thickness 10 mm and outer diameter of 'd' mm. The Modulus of Elasticity is E = 200 GPa and the yield stress is $\sigma_{yield} = 300$ MPa. Table below shows a list of the lengths 'L' and outer diameters 'd'. Identify the long and the short columns. Assume the ends of the column are built in.

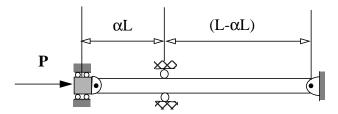
L (m)	d (mm)
1	60
2	80
3	100
4	150
5	200
6	225
7	250

M. Vable

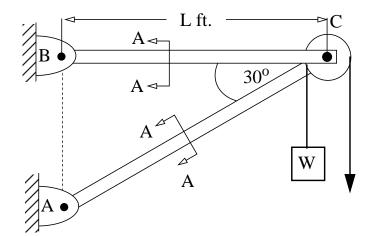
11.16 A force F= 750 lb is applied to the two bars structure as shown. Both bars have a diameter of d=1/4 inch, modulus of elasticity E=30,000 ksi, and yield stress $\sigma_{yield}=30$ ksi. Bar AP and BP have lengths of $L_{AP}=8$ inches and $L_{BP}=10$ inches, respectively. Determine the factor of safety for the two-bar structures.

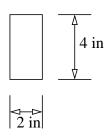


11.26 Determine the critical buckling in terms of E, I, L, and α . (b) Determine the critical load when $\alpha = 0.5$.



11.40 A hoist is constructed using two wooden bars to lift a weight of 5 kips. The Modulus of Elasticity for wood is E = 1,800 ksi and the allowable normal stress 3.0 ksi. Determine the maximum value of L to the nearest inch that can be used in constructing the hoist.





Cross-section AA