M. Vable Mechanics of Materials: Chapter 6 Oxford University Press

Symmetric Bending of Beams

* A beam isany long structural member on which loads act perpendicu-
lar to the longitudinal axis.

L ear ning objectives
« Understand the theory, its limitations and its applications for strength

based design and analysis of symmetric bending of beams.
* Develop the discipline to visualize the normal and shear stressesin

symmetric bending of beams.
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6.5 Due to the action of the external moment M,and force P, the
rigid plate shown in Fig. P6.5 was observed to rotate by 2° and the nor-
mal strain in bar 1 wasfound ¢, = 2000 u in/in. Both bars have an area of

cross-section of A = 1/2 in? and aModulus of Elasticity of
E = 30,000 ksi. Determine the applied moment M, and force P.
Ty ] Bar 2

- 4in

'/"X 2in Bar 1
; O/ /
M, }4748in 4>{

Fig. P6.5
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Internal Bending M oment

M, = —J'nydi
A

;]4’ oxdi =0

Above equations are independent of material model as these equa-
tions represents static equivalency between the normal stress on the
entire cross-section and the internal moment.

* Theline on the cross-section where the bending normal stressis zero
is called the neutral axis.

 Location of neutral axisis chosento satisfyjoxdi = 0.
A

« Origin of y isalways at the neutral axis, irrespective of the material
model.
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6.8 Steel (Egeq = 30,000 ksi) strips are securely attached to a
wooden (E,yooq = 2,000 ksi) beam as shown below. The normal strain at

the cross-section due to bending about the z-axisise, . = —100y [

wherey is measured in inches, and the dimensions of the cross-section
ared =2in, hyy =4 in and hg= (1/8) in. Determine the equivalent internal
moment M.,

&
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Theory of symmetric bending of beams

Limitations

» Thelength of the member is significantly greater then the greatest
dimension in the cross-section.

* We are away from the regions of stress concentration.

* Thevariation of external loads or changes in the cross-sectional areas
are gradual except in regions of stress concentration.

* The cross-section has a plane of symmetry.

* Theloads arein the plane of symmetry.

» Theload direction does not change with deformation.

* Theexternal loads are not functions of time.

Py| P

Bending only | | Bending and torsion
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Theory objectives:

» To obtain aformulafor the bending normal stress a,,, and bending
shear stress Ty, in terms of the internal moment M, and the internal
shear force Vy,

» Toobtain aformulafor calculation of the beam deflection v(x).

The distributed force p(x), has units of force per unit length, and is con-
sidered positive in the positive y-direction.

External Forces
and Moments
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Kinematics

Original Grid

Assumption 1 Squashing, i.e., dimensional changesin the y-direction, issig-
nificantly smaller than bending.

_ 0 _ o0 =
%yy_@"ODD v =v(x)

Assumption 2 Plane sections before deformation remain plane after deforma-
tion.u = u Yy

Assumption 3 Plane perpendicular to the beam axis remain nearly perpendicu-
lar after deformation. y__ = 0.
Xy
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dv

Assumption 4 Strainsaresmall. tan) = | = o
x

Method |
AB = CD = CD,

R . - AB —AB _ (R_ y)AY—RAY
y\ﬂ xx AB RAU

\\RRK\\\&
£5

(32)

5

I

wohe

' Method I1
‘ Au = —ysinAY = —yAY

A dy _ d2v

e = lim B2 = 5Y - _ 2V (x
o T ™ o T P T 2

* bending normal strain €, varies linearly with y and has maximum
value at either the top or the bottom of the beam.

2
% = d—‘;(x) isthe curvature of the deformed beam and R istheradius
dx
of curvature of the deformed beam.

Material Model
Assumption 5 Material isisotropic.

Assumption 6 Material islinearly elastic.
Assumption 7 There are no inelastic strains.

2
, _ _ : _ dv

From Hooke'sLaw:o , = Ee_,weobtano, = —Eyd—z(x)
X
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L ocation of neutral axis

2
dv
J’ o..d4 = 0or J’ —Ey—z(x)dA = 0or J’ EydA = 0
A A dx “A
Assumption 8 Material is homogenous across the cross-section of the beam.
J'ydA =0
A

* Neutral axisi.e, theorigin, is at the centroid of the cross-section con-
structed from linear-elastic, isotropic, homogenous material.

* Theaxia problem and bending problem are de-coupled if the originis
at the centroid for linear-elastic, isotropic, homogenous material

* bending normal stress o, varieslinearly withy and is zero at the cen-

troid.
* bending normal stress g, is maximum at a point farthest from the

neutral axis (centroid).
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6.20 The cross-section of abeam with a coordinate system that has
an origin at the centroid C of the cross-section is shown. The normal
strain at point A due to bending about the z-axis, and the Modulus of
Elasticity are as given.

(a) Plot the stress distribution across the cross-section.
(b) Determine the maximum bending normal stress in the cross-section.
(c) Determine the equivalent internal bending moment M, by integration.

|<— 4in

y
£ =200 y i |
A lin
E = 8000 ksi j y
e
4in
v

lin
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Sign convention for internal bending moment

M, = —J’ycxdi
A

y  Compressive o,

y ~
Tensile o,

» Thedirection of positive internal moment M, on a free body diagram

must be such that it puts a point in the positive y direction into com-
pression.
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Sign convention for internal shear force
Internal Forces and Moment necessary for equilibrium

A V\
B 5 ( 1
A A
| , M i B

* Recal Assumption 3: Plane perpendicular to the beam axis remain
nearly perpendicular after deformation. Yy = 0.

e From Hooke's LaNZTxy = nyy
* Bending shear stressis small but not zero.
 Check on theory: The maximum bending normal stress o, in the

beam should be nearly an order of magnitude greater than the maxi-
mum bending shear stress T,

Vy = yxy dA

« Thedirection of positive internal shear force on afree body diagramis
In the direction of positive shear stress on the surface.
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6.26 A beam and loading in three different coordinate system is
shown. Determine the internal shear force and bending moment at the
section containing point A for the three cases shown using the sign con-
vention described in Section 6.2.5.

5 kN/m 5 kN/m 5 kN/m
%‘ Yoy oy %‘ Y v v vy
— X eA | oA X *A x=—
0.5 m"}" 0.5 VT!—»{ 0.5 m->~<* 0.5 m—P - 05 0.5 m—
Y a1 Case2 vy Case3 vy
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Flexure Formulas

2
_ dv
O = —Ey—z(x)
dx
d2 d2
% v 2
M, = —J’ycxdi = —J'y{—Ey—z(x)}dA = —2(x) EIE)/ dA%
A A dx dx 1
For homogenous cross-sections
2
 Moment-curvature equation: M, = EIZZd—‘;
dx

1 2z IS the second area moment of inertia about z-axis.
The quantity El, is called the bending rigidity of a beam cross-sec-

tion.
L M
* Flexurestressformulaa o = —0——]
XX i
0420

Two options for finding M,
* On afreebody diagram M, is drawn as per the sign convention irre-

spective of the loading.
positive values of stress gy, aretensile
negative values of oy, are compressive,
» Onafreebody diagram M,isdrawn at the imaginary cut in adirection
to equilibrate the external loads.
The tensile and compressive nature of a,, must be determined by inspec-
tion.
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6.20 The cross-section of abeam with a coordinate system that has
an origin at the centroid C of the cross-section is shown. The normal
strain at point A due to bending about the z-axis, and the Modulus of
Elasticity are as given.

(d) Determine the equivalent internal bending moment M., by flexure for-

mula
|<— 4in
y
£ =200 p ! |
A lin
E = 8000 ksi j i
zl C
4in
v

lin

6-15



M. Vable Mechanics of Materials: Chapter 6 Oxford University Press

Class Problem 1

The bending normal stress at point B is 15 ksi.
(a) Determine the maximum bending normal stress on the cross-section.
(b) What is the bending normal strain at point A if E = 30,000 ksl.

f—4 in—
AY '
A | tiin
I
[1.51n
- C- . %
S
l in — |« <21n
Ri
| D ] }1in
21in
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6.15 Fig. P6.15(a) shows four separate wooden strips that bend
independently about the neutral axis passing through the centroid of each
strip. Fig. P6.15(b) shows the four strips are glued together and bend as a
unit about the centroid of the glued cross-section. (a) Show that

[, = 161 wherelg isthe area moment of inertias for the glued cross-
section and | g is the total area moment of inertia of the four separate
beams. (b) Also show 0, = 0¢/4, where 0 and 0g are the maximum

bending normal stress at any cross-section for the glued and separate
beams, respectively.

(a') Separate beams : (b)

Glued beams

6-17



M. Vable Mechanics of Materials: Chapter 6 Oxford University Press

6.30 For the beam and loading shown, draw an approximate
deformed shape of the beam. By inspection determine whether the bend-
ing normal stressistensile or compressive at points A and B.

d——

Class Problem 2

6.34 For the beam and loading shown, draw an approximate
deformed shape of the beam. By inspection determine whether the bend-
ing normal stressistensile or compressive at points A and B.

5 S
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6.41 The beam, loading and the cross-section of the beam are as
shown. Determine the bending normal stress at point A and the maxi-
mum bending normal stress in the section containing point A

Im - Im -

80 mm ~
b= 100 mm —+|
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6.46 A wooden (E = 10 GPa) rectangular beam, loading and cross-
section are as shown in Fig. P6.46. The normal strain at point A in Fig.

P6.46 was measured ase .. = —600 . Determine the distributed force
w that is acting on the beam.

gt

Fig. P6.46
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Shear and Moment by Equilibrium

P_ pAx
M.t } f T M, + AM, M. A M.+ AM.
V\ !"'— ._\.l‘ ‘_“"J. V\ T AV\ ‘!\F"'— Ax __""{ V\ ! A‘\

Differential Beam Element

dv dMm
z

Differential Equilibrium Equations: ——~ = —p =V
dx dx y

* The above equilibrium equations are applicable at all points on the
beam except at points where there is a point (concentrated) force or
point moment.

Two Optionsfor finding Vy, and M, as a function of X

* Integrate equilibrium equations and find integration constants by using
boundary conditions or continuity conditions. This approach is pre-
ferred if p not uniform or linear.

« Makean imaginary cut at some location x, draw free body diagram
and use static equilibrium equations to find V,, and M. Check results

using the differential equilibrium equations above. This approach is
preferred if p isuniform or linear.
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6.51

(a) Write the equations for shear force and bending moments
as afunction of x for the entire beam. (b) Show your results satisfy the
differential equilibrium equations.

AY

5 kN/m W

s

3m
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6.58 For the beam shown in Fig. P6.58, (a)write the shear force and
moment equation as a function of x in segment CD and segment DE. (b)
Show that your results satisfy the differential equilibrium equations. (c)
What are the shear force and bending moment value just before and just
after point D.
lr y

2 kN/m - 10 KN-m 12 kN

K { } 16 kN-m R
E

=\ r.\_B

D
A A A 2 kNim

rd
D-+4-

=

-

| _
3m '2m 4 m

-

3 ni

Fig. P6.58

ClassProblem 3

Write the shear force and moment equation as a function of x in segment
AB.
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Shear and Moment Diagrams

* Shear and Moment diagrams are a plots of internal shear force V,, and
internal bending moment M, vs. X.

Distributed force

* Anintegral represent area under the curve.
To avoid subtracting positive areas and adding negative areas, define

==V
y
X, X2
V2:V1+J'pdx I\/|2:|\/|1+J'de
x4 X1

ty> (@) (b) (© (d)
i w
(- - =

. Vi VZ:\Ell—w(xz—xl) Vv
: : V ; : Xy X2
\ e N | % |

V| e Vy / VN bV B : y Ly
Xy /%o Vi. =Vtwixexy) : : P VoEVW(xoxq)
ncreéasi ng incl m of tangent P X1 i Decre;asi ng incli r?e of tangen| | ncrea;si ng incli na:é of tangent

Decreasing incline of tangent

M2 'M2 My

* If Vyislinear inaninterval then M, will be aquadratic function in that
interval.
 Curvature rule for quadratic M, curve.
The curvature of the M, curve must be such that the incline of the tangent
to the M, curve must increase (or decrease) as the magnitude of the V
increases (or decreases).
or

The curvature of the moment curve is concave if p is positive, and convex
If pisnegative.
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Point Force and Moments

 Internal shear force jumps by the value of the external force as one
crosses the external force from left to right.

* Internal bending moment jumps by the value of the external moment
as one crosses the external moment from left to right.

» Shear force & moment templates can be used to determine the direc-
tion of the jump inV and M,,.

A template is afree body diagram of a small segment of a beam created
by making an imaginary cut just before and just after the section where
the a point external force or moment is applied.

Shear Force Template Moment Template
Vi Va
T | “C[ G ] D"
AX >| AX
AX Ax | B < =
Fext _ .
My, =Mi+M . Template Equations

V2 = Vl + Fext

* ThejumpinV isinthedirection of Fg

6-25



M. Vable Mechanics of Materials: Chapter 6 Oxford University Press

6.70 Draw the shear and moment diagram and determine the val -
ues of maximum shear force Vy, and bending moment M.

3 kN/m
v LPT) (] O

X 8 KN-m
AN Y . A
4 kKN 2 kN/m B AX _ Ax |
—3m-—f—4m-—sf«—4 m—-
= +
M2 Ml Mext
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6.77 Two pieces of lumber are glued together to form the beam
shown Fig. P6.77. Determine the intensity w of the distributed load, if the
maximum tensile bending normal stressin the glue limited to 800 psi (T)
and maximum bending normal stressiswood is limited to 1200 psi.

wlb/in

Yooy v v 1 —
_ éﬁi § 4in
30in 70in >\J i

n

Fig. P6.77
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Shear Stressin Thin Symmetric Beams

* Recollect problem 6-15 for motivation for gluing beams

Separate beams

Glued beams

Neutral axis

[G:16[S GG:OS/4

Separate Beams Glued Beams

No Relative

Relative Sliding Sliding

» Assumption of plane section perpendicular to the axis remain perpen-
dicular during bending requires the following limitation.
Maximum bending shear stress must be an order of magnitude
less than maximum bending normal stress.
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Shear stressdirection

Free surface

A

N + dN

Shear Flow: ¢ = 1_ ¢
« Theunits of shear flow ‘q’ are force per unit length.

The shear flow along the center-line of the cross-section isdrawn in such
adirection asto satisfy the following rules:
* theresultant forcein the y-direction isin the same direction as V.
» the resultant force in the z-direction is zero.
* it is symmetric about the y-axis. This requires shear flow will change
direction as one crosses the y-axis on the center-line.
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6.88 Assuming a positive shear force Vy, (2) sketch the direction of

the shear flow along the center-line on the thin cross-sections shown.(b)
At points A, B, C, and D, determine if the stress component is Ty, OF Ty,

and if it is positive or negative.

AY
B | D
-4
Z +C

I

A |
A ]

Class Problem 4

6.90 Assuming a positive shear force Vy, (a) sketch the direction of

the shear flow along the center-line on the thin cross-sections shown.(b)
At pointsA, B, C, and D, determine if the stress component is Ty, OF Ty,

and if it is positive or negative.

N
A B D
r—@& ——@&|— —| — @ — -+
I I I I
I I I I
| |- | I I
WE: | dle |
I I I I
I I I I
I I I I
L1 | L1 L1 | L1 |
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Bending Shear Stress Formula

Free surface
b

Free surface T ¥
o i < ’

/| /I Free surface ,‘7 - = Free surface
N, + dN,
N =
dng
(Ng+dNJ =N+ T tdx =0 Tl =~ 4
d Zy|:| d MZ
T t=——(0_dA = N d4
sx dxAI xx dx.]'D I D " dx [ZZJ'y
s

Agisthe area between the free surface and the point where shear stress
Is being eval uated.

: d M2,
Define: 0, = J’ydA 1.t = —[ }
A

N

Assumption 9 Thebeam is not tapered.

[0, Odwm EOAY v, 9
g =11 = zdz_ B—% Tsx:TXS:_BL—ZE
ZZ]:| X |:| zZZ D DIZZtD
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» Agistheareabetween the free surface and the point where shear stress

* Q. iszero at the top surface as the enclosed area A4 is zero.
Q, is zero at the bottom surface (As=A) by definition of centroid.

* Bending shear stress at a section is maximum at the neutral axis.

Calculation of Q,

0_= [yd4
!

N

IS being evaluated.

ty Centroid of
A As
Q, = Ay

Line along which N\
Shear stressis y
being found. ? S

- Neutral Axis

z 2

Centroid of A, Q, = 43y,

Q, ismaximum at the neutral axis.

\ y
)LAZ
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M. Vable
Bending stresses and strains
Top or Neutral Point in Point in
Bottom AXIS Web Flange
Oxx — Gx —_ — Ox —
€ = —E— 8yy - _E}E% = Ve, €2 = _E)EXH = —VE,
T T,

Vo =& V==
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6.97 For the beam, loading and cross-section shown, determine: (a)
the magnitude of the maximum bending normal and shear stress. (b) the
bending normal stress and the bending shear stress at point A. Point A is
on the cross-section 2 m from the right end. Show your result on a stress
cube. The area moment of inertiafor the beam was calculated to be

|, = 453 (106) mm*

30 kN 8 kKN
AY l 11 KN°m Y Y& s
A% I '[ —= ]| -
— X <
A A A A 8 T
6 KN/m 120 mm v ;
' 3m »r—
le—>te 4 m 4m-—~ 300 mm
20 kN
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Shear Flow
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6.104 A wooden cantilever box beam isto be constructed by nailing
four 1 inch x 6 inch pieces of lumber in one of the two ways shown. The
allowable bending normal and shear stress in the wood are 750 psi and
150 psi, respectively. The maximum force that the nail can support is
100 Ibs. Determine the maximum value of load P to the nearest pound,
the spacing of the nailsto the nearest half inch, and the preferred nailing
method.*

Joining Method 1 Joining Method 2

j ¥ P l
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6.115 A cantilever, hollow-circular aluminum beam of 5 feet length
Isto support aload of 1200-Ibs. The inner radius of the beamis 1 inch. If
the maximum bending normal stressisto be limited to 10 ksi, determine
the minimum outer radius of the beam to the nearest 1/16th of an inch.
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