
M. Vable Mechanics of Materials: Chapter 4 Oxford University Press
Axial Members

• Members with length significantly greater than the largest cross-sec-
tional dimension and with loads applied along the longitudinal axis.

Learning objectives are: 

• Understand the theory, its limitations, and its applications for design 
and analysis of axial members. 

• Develop the discipline to draw free body diagrams and approximate 
deformed shapes in the design and analysis of structures.
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Theory

Theory Objective

•  to obtain a formula for the relative displacements (u2-u1) in terms of 
the internal axial force N. 

• to obtain a formula for the axial stress σxx in terms of the internal axial 
force N.
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Kinematics

Original Grid Deformed Grid

x
y

u is constant in y direction.

Assumption 1 Plane sections remain plane and parallel. u u x( )=
• The displacement u is considered positive in the positive x-direction.

Assumption 2 Strains are small. εxx xd
du x( )

=

Material Model
Assumption 3 Material is isotropic.
Assumption 4 Material is linearly elastic.
Assumption 5 There are no inelastic strains.

From Hooke’s Law:σxx Eεxx= , we obtainσxx E
xd

du
=

Internal Axial Force

N σxx Ad
A
∫=

N E
xd

du
Ad

A
∫ xd

du
E Ad

A
∫= =

• For pure axial problems the internal moments (bending) My and Mz 
must be zero. 

• For homogenous materials all external and internal axial forces must 
pass through the centroids of the cross-section and all centroids must 
lie on a straight line.
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Axial Formulas
Assumption 6 Material is homogenous across the cross-section.

N E
xd

du
Ad

A
∫ EA

xd
du

= = or
xd

du N
EA
-------=

σxx E
xd

du
E

N
EA
------- 

 = = or σxx
N
A
----=

• The quantity EA is called the Axial rigidity. 
Assumption 7 Material is homogenous between x1 and x2. 

Assumption 8 The bar is not tapered between x1 and x2.

Assumption 9 The external (hence internal) axial force does not change with x 
between x1 and x2. 

 u2 u1–
N x2 x1–( )

EA
---------------------------=

Two options for determining internal axial force N
• N is always drawn in tension at the imaginary cut on the free body dia-

gram. 
Positive value of σxx will be tension.

Positive u2-u1 is extension. 

Positive u is in the positive x-direction.
• N is drawn at the imaginary cut in a direction to equilibrate the exter-

nal forces on the free body diagram. 
Tension or compression for σxx has to be determined by inspection. 

Extension or contraction for δ=u2-u1 has to be determined by inspection.

Direction of displacement u has to be determined by inspection.
Axial stresses and strains
• all stress components except σxx can be assumed zero.

εxx

σxx
E

---------=

εyy

νσxx
E

------------ 
 – νεxx–= = εzz

νσxx
E

------------ 
 – νεxx–= =
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 4.8 Determine the internal axial forces in segments AB, BC, and 
CD by making imaginary cuts and drawing free body diagrams.
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Axial Force Diagrams

• An axial force diagram is a plot of internal axial force N vs. x

• Internal axial force jumps by the value of the external force as one 
crosses the external force from left to right.

• An axial template is used to determine the direction of the jump in N.

• A template is a free body diagram of a small segment of an axial bar 
created by making an imaginary cut just before and just after the sec-
tion where the external force is applied. 

Template 1 Template 2
Template 1 Equation

N2 N1 Fext–=

Template 2 Equation

N2 N1 Fext+=

 4.8 Determine the internal axial forces in segments AB, BC, and 
CD by drawing axial force diagram.

 4.12 The axial rigidity of the bar in problem 4.8 is 
EA = 80,000 kN. Determine the movement of section at C.
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 4.19 The tapered bar shown in Fig. P4.19 has a cross-sectional area 
that varies with x as given. Determine the elongation of the bar in terms 
of P, L, E and K. 

x BA
P

L

A K 4L 3x–( )=

  Fig. P4.19
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 4.22 The columns shown has a length L, Modulus of elasticity E, 
specific weight γ, and length a as the side of an equilateral triangle. Deter-
mine the contraction of the column in terms of L, E, γ, and a. 

  Fig. P4.22
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 4.28 The frictional force per unit length on a cast iron pipe being 
pulled from the ground varies as a quadratic function as shown. Deter-
mine the force F needed to pull the pipe out of ground and the elongation 
of the pipe before the pipe slips in terms of the modulus of elasticity E, 
area of cross-section A, length L and the maximum value of frictional 
force fmax.
4-9



M. Vable Mechanics of Materials: Chapter 4 Oxford University Press
 4.32 A hitch for an automobile is to be designed for pulling a max-
imum load of 3,600 lbs. A solid-square-bar fits into a square-tube, and is 
held in place by a pin as shown. The allowable axial stress in the bar is 
6 ksi, the allowable shear stress in the pin is 10 ksi, and the allowable 
axial stress in the steel tube is 12 ksi. To the nearest 1/16th of an inch, 
determine the minimum cross-sectional dimensions of the pin, the bar 
and the tube. Neglect stress concentration.(Note: Pin is in double shear)

Pin

Square 
Bar

Square 
Tube

  Fig. P4.32
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 4.41 Table below shows the value of distributed axial force at sev-
eral point along the axis of a hollow steel (E = 30,000 ksi) rod. The rod 
has a length of 36 inches, an outside diameter of 1 inch, and an inside 
diameter of 0.5 inch. Determine (a) the displacement of the end A using 
numerical integration. (b) the maximum axial stress in the rod.
 

  Fig. P4.41

A B

p(x) lb/in

x

x 
(inches)

p (x) 
lbs./in

x 
(inches)

p (x) 
lbs./in

0 260 21 -471

3 106 24 -598

6 32 27 -645

9 40 30 -880

12 -142 33 -1035

15 -243 36 -1108

18 -262
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Composite Bars

• Assumption 6 of material homogeneity across the cross-section is no 
longer valid.

N
xd

du
E Ad

A
∫ xd

du
E1 Ad

A1

∫ E2 Ad
A2

∫ ⋅ ⋅ En Ad
An

∫+ + + += =

• Rest of derivation is same as for homogenous cross-section.

Homogenous cross-section

 
xd

du N EA( )⁄=

u2 u1– N x2 x1–( ) EA( )⁄=

σxx N A⁄=

Composite cross-section

xd
du N E jA j

j 1=

n

∑⁄=

u2 u1– N x2 x1–( ) E jA j
j 1=

n

∑⁄=

σxx( )
i

NEi( ) E jA j
j 1=

n

∑
 

 

⁄=
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 4.47 A concrete column is reinforced using nine iron circular bars 
of diameter 1 inch. The modulus of elasticity for concrete and iron are 
Ec= 4,500 ksi and Ei = 25,000 ksi. Determine (a) the maximum axial 
stress in concrete and iron. (b) the contraction of the column. 
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D

  Fig. P4.47
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 4.49 A cross-section of a bar is made from two materials. Assume 

parallel sections remain parallel i.e., εxx xd
du

x( )= . In terms of the vari-

ables P, E and h determine (a)the location (yP) of force P on the cross-
section so that there is only axial deformation and no bending. (b) the 
axial stress at point A.

  Fig. P4.49
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Structural analysis

δ NL
EA
--------=

•  δ is the deformation of the bar in the undeformed direction. 
• If N is a tensile force then δ is elongation.
• If N is a compressive force then δ is contraction. 
• Deformation of a member shown in the drawing of approximate 

deformed geometry must be consistent with the internal force in the 
member that is shown on the free body diagram.

• In statically indeterminate structures number of unknowns exceed the 
number of static equilibrium equations. The extra equations needed to 
solve the problem are relationships between deformations obtained 
from the deformed geometry.

•  Force method----Internal forces or reaction forces are unknowns. 
• Displacement method---Displacements of points are unknowns.

General Procedure for analysis of indeterminate structures.

• If there is a gap, assume it will close at equilibrium.
• Draw Free Body Diagrams, write equilibrium equations. 
• Draw an exaggerated approximate deformed shape. Write compatibil-

ity equations.
• Write internal forces in terms of deformations for each member. 
• Solve equations.
• Check if the assumption of gap closure is correct. 
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 4.63  A force F= 20 kN is applied to the roller that slides inside a 

slot. Both bars have an area of cross-section of A = 100 mm2 and a Mod-
ulus of Elasticity E = 200 GPa. Bar AP and BP have lengths of LAP= 
200 mm and LBP= 250 mm respectively. Determine the displacement of 
the roller and axial stress in bar A.

F

75o
30o

P
A

B

  Fig. P4.63
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 4.68 In Fig. P4.68, a gap exists between the rigid bar and rod A 
before the force F=75 kN is applied. The rigid bar is hinged at point C. 
The lengths of bar A and B are 1 m and 1.5 m respectively and the diam-
eters are 50 mm and 30 mm respectively. The bars are made of steel with 
a Modulus of Elasticity E = 200 GPa and Poisson’s ratio is 0.28. Deter-
mine (a) the deformation of the two bars. (b) the change in the diameters 
of the two bars. 

B

P

0.4 m

Rigid
C

0.9 m

40o

0.0002 m

F A

  Fig. P4.68
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 Class Problem 1

Write equilibrium and compatibility equations for the following prob-
lems.
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 4.80 A rigid bar hinged at point O has a force P applied to it as 
shown. Bars A and B are made of steel (E = 30,000 ksi). The cross-sec-

tional areas of the bars A and B are AA = 1 in 2 and AB = 2 in 2 respec-
tively. If the allowable deflection at point C is 0.01 inch and the allowable 
stress in the bars is 25 ksi, determine the maximum force P that can be 
applied.

P 

24 in 30 in 42 in 

0.005in

48 in 
36 in A

B

C
O

rigid

  Fig. P4.80
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Initial Stress/Strain and Temperature Effects

δ NL
EA
-------- εoL+=
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• εo α∆T=  Thermal Strains. 

• No thermal stresses are produced in a homogenous, isotropic, uncon-
strained body due to uniform temperature changes.

• Increase of temperature ---extension.
• Decrease of temperature---contraction.
• Sign of εoL  must be consistent with N shown on free body diagrams.
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 4.88 Bar A was manufactured 2 mm less than bar B due to an error. 
The attachment of these bars to the rigid bar would cause a misfit of 
2 mm. Calculate the initial stress in each assembly. Which of the two 
assembly configuration you would recommend? Use modulus of elastic-
ity of E = 70 GPa and diameter of the circular bars as 25 mm.

Assembly 1 Assembly 2
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 4.94 Three metallic rods are attached to a rigid plate as shown. The 

temperature of the rods is lowered by 100 oF after the forces are applied. 
Assuming the rigid plate does not rotate, determine the movement of the 
rigid plate

Area 

in2
E

ksi
α

10 -6/ oF

Aluminum 4 10,000 12.5

Steel-1 4 30,000 6.6

Steel-2 12 30,000 6.6
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Stress Approximation

Free Surface

• A surface on which no external forces or moments are acting is called 
a free surface.

x
y

z

Free SurfaceStress Free

Thin Bodies

• The smaller the region of approximation, the better is the accuracy of 
the analytical model.  

y

z

x

Free surface

Free surface
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Axi-symmetric Bodies

• If a body has a cross-section that is symmetric about an axis and if the 
applied external forces or moments are also symmetric about the same 
axis, then the stresses cannot depend upon the angular location of the 
point.
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Thin Walled Pressure Vessels

• The “thin wall” limitation implies that the ratio of inner radius R to 
the wall thickness t is greater than 10. 

Cylindrical Vessels

σxx

τxr

τxθ

σθθ

σrrτθx

τθr

Α

Β

x

θ
r

Free surface, hence 

C

D

σrr = 0; τrx = 0; τrθ= 0

Zero because of thin body
and τxr = τrx

Zero because of 
axi-symmetry and
no torque

Zero because 
τθx = τxθ

Zero because 
τθr = τrθ

No tangential forces
hence τrθ = 0; τrx = 0

• All shear stresses are zero, the radial normal stress is neglected, the 
axial stress σxx and the hoop stress σθθ are assumed uniform across 
the thickness and across the circumference.

θ
x

r
σxx

σxx

σθθ

σθθ
p (2R)(dx)

σθθ (t)(dx)

σθθ (t)(dx)

dx

2R

t

p(π R2)

σxx(2πR)(t)

σθθ
pR
t

-------= σxx
pR
2t
-------=

• With R/t > 10 the stresses σxx and σθθ are greater than the maximum 
value of radial stress σrr (=p) by a factor of at least 5 and 10, respec-
tively. 
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Spherical vessels

• (i) All shear stresses are zero. i.e. 
τrφ τφr 0= = τrθ τθr 0= = τθφ τφθ 0= =

• (ii) Normal radial stress σrr varies from a zero value on the outside to 
the value of the pressure on the inside. We will once more neglect the 
radial stress in our analysis and justify it post-priori.

• (iii) The normal stresses σθθ and σφφ are equal and are constant over 
the entire vessel. We set σθθ σφφ σ= = .

σφφ

σφφ

σθθ
σθθ

θ

φ
r

x

y

z

σ(2πR)(t)

p (πR2)

t

2R

σ pR
2t
-------=

 4.105 A pressure tank 15 feet long and 40 inch diameter is to be fab-
ricated from a 1/2 inch thick sheet. A 15 feet long, 8 inch wide and 1/2 
inch thick plate is bonded onto the tank to seal the gap. What is the shear 
stress in the adhesive when the pressure in the tank is 75 psi? Assume 
uniform shear stress over the entire inner surface of the attaching plate.
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