Strain

Challenger Explosion During Flight

- Relating strains to displacements is a problem in geometry.

Learning objectives

- Learning the concept of strain.
- Learning the use of approximate deformed shape for calculating strains from displacements.

Preliminary Definitions

- The total movement of a point with respect to a fixed reference coordinates is called displacement.
- The relative movement of a point with respect to another point on the body is called deformation.
- Lagrangian strain is computed from deformation by using the original undeformed geometry as the reference geometry.
- Eulerian strain is computed from deformation by using the final deformed geometry as the reference geometry.

Average Normal Strain

$$
\varepsilon_{a v}=\frac{L_{f}-L_{o}}{L_{o}}=\frac{\delta}{L_{o}}
$$

- Elongations $\left(\mathrm{L}_{\mathrm{f}}>\mathrm{L}_{\mathrm{O}}\right)$ result in positive normal strains. Contractions $\left(\mathrm{L}_{\mathrm{f}}<\mathrm{L}_{\mathrm{o}}\right)$ result in negative normal strains.

$$
L_{0}=x_{B}-x_{A}
$$

$$
\varepsilon_{a v}=\frac{u_{B}-u_{A}}{x_{B}-x_{A}}
$$

$$
L_{f}=\left(x_{B}+u_{B}\right)-\left(x_{A}+u_{A}\right)
$$

$$
L_{f}=L_{o}+\left(u_{B}-u_{A}\right)
$$

Units of average normal strain

- To differentiate average strain from strain at a point.
- in/in, or cm/cm, or m/m
- percentage.
0.5% is equal to a strain of 0.005
- prefix: $\mu=10^{-6}$. 1000μ in / in is equal to a strain 0.001 in / in
2.5 Due to the application of the forces in Fig. P2.5, the displacement of the rigid plates in the x direction were observed as given below. Determine the axial strains in rods in sections AB, BC, and CD.

$$
u_{B}=-1.8 \mathrm{~mm} \quad u_{C}=0.7 \mathrm{~mm} \quad u_{D}=3.7 \mathrm{~mm}
$$

Fig. P2.5

Average shear strain

Deformed grid

$$
\gamma_{a v}=\frac{\pi}{2}-\alpha
$$

- Decreases in the angle $(\alpha<\pi / 2)$ result in positive shear strain. Increase in the angle ($\alpha>\pi / 2$) result in negative shear strain

Units of average shear strain

- To differentiate average strain from strain at a point.
- rad
- prefix: $\mu=10^{-6}$. $1000 \mu \mathrm{rad}$ is equal to a strain 0.001 rad

$\varepsilon_{\text {small }}$ Eq. 2.6	$\varepsilon \quad$ Eq. 2.5	$\%$ error
1.0	1.23607	19.1
0.5	0.58114	14.0
0.1	0.10454	4.3
0.05	0.005119	2.32
0.01	0.01005	0.49
0.005	0.00501	0.25

- Small-strain approximation may be used for strains less than 0.01
- Small normal strains are calculated by using the deformation component in the original direction of the line element regardless of the orientation of the deformed line element.
- In small shear strain (γ) calculations the following approximation may be used for the trigonometric functions: $\tan \gamma \approx \gamma \quad \sin \gamma \approx \gamma \quad \cos \gamma \approx 1$
- Small-strain calculations result in linear deformation analysis.
- Drawing approximate deformed shape is very important in analysis of small strains.
2.28 A thin triangular plate ABC forms a right angle at point A . During deformation, point A moves vertically down by δ_{A}. Determine the average shear strain at point A .

$$
\delta_{A}=0.008 \mathrm{in}
$$

Fig. P2.28
2.40 A roller at P slides in a slot as shown. Determine the deformation in bar AP and bar BP by using small strain approximation.

Fig. P2.40

Class Problem 1

Draw an approximate exaggerated deformed shape.
Using small strain approximation write equations relating δ_{AP} and δ_{BP} to δ_{P}.

Engineering Strain

Engineering strain matrix $\left[\begin{array}{lll}\varepsilon_{x x} & \gamma_{x y} & \gamma_{x z} \\ \gamma_{y x} & \varepsilon_{y y} & \gamma_{y z} \\ \gamma_{z x} & \gamma_{z y} & \varepsilon_{z z}\end{array}\right]$

Plane strain matrix

$$
\left[\begin{array}{ccc}
\varepsilon_{x x} & \gamma_{x y} & 0 \\
\gamma_{y x} & \varepsilon_{y y} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Strain at a point

$$
\begin{array}{ll}
\varepsilon_{x x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta u}{\Delta x}\right)=\frac{\partial u}{\partial x} \\
\gamma_{x y}=\gamma_{y x}=\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}}\left(\frac{\Delta u}{\Delta y}+\frac{\Delta v}{\Delta x}\right)=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\varepsilon_{y y}=\frac{\partial v}{\partial y} & \gamma_{y z}=\gamma_{z y}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
\varepsilon_{z z}=\frac{\partial w}{\partial z} & \gamma_{z x}=\gamma_{x z}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}
\end{array}
$$

- tensor normal strains = engineering normal strains
- tensor shear strains $=($ engineering shear strains $) / 2$

Strain at a Point on a Line

$$
\varepsilon_{x x}=\frac{d u(x)}{d x}
$$

2.54 Displacements u and v in the x and y directions respectively were measured by Moire Interferometry method at many points on a body. Displacements of four points on a body are given below. Determine the average values of strain components $\varepsilon_{x x}, \varepsilon_{y y}$, and $\gamma_{x y}$ at point A shown in Fig. P2.54.

	y		$u_{A}=0$	$v_{A}=0$
			$u_{B}=0.625 \mu \mathrm{~mm}$	$v_{B}=-0.3125 \mu \mathrm{~mm}$
	$\begin{array}{ll} \hline \mathrm{C} & \mathrm{D} \end{array}$		$u_{C}=-0.500 \mu \mathrm{~mm}$	$v_{C}=-0.5625 \mu \mathrm{~mm}$
	A B	$\xrightarrow{\mathrm{x}}$	$u_{D}=0.250 \mu \mathrm{~mm}$	$v_{D}=-1.125 \mu \mathrm{~mm}$

Fig. P2.54
2.60 The axial displacement in a quadratic one-dimensional finite element is as given below.

$$
u(x)=\frac{u_{1}}{2 a^{2}}(x-a)(x-2 a)-\frac{u_{2}}{a^{2}}(x)(x-2 a)+\frac{u_{3}}{2 a^{2}}(x)(x-a)
$$

Determine the strain at Node 2.

Node 1	Node 2	Node 3
-	\bullet	\bigcirc
$\mathrm{x}_{1}=0$	$\mathrm{x}_{2}=\mathrm{a}$	$\mathrm{x}_{3}=2 \mathrm{a}$

2.70 A metal strip is to be pulled and bent to conform to a rigid surface such that the length of strip between OA fits the arc OB of the surface. The equation of the surface $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the length OA is as given below. Determine the average normal strain in the metal strip. $f(x)=\left(0.04 x^{3 / 2}-0.005 x\right)$ inches and length $\mathrm{OA}=9$ inches. Use numerical integration

Fig. P2.70

