

Todd Lammle's CompTIA's Network+

Chapter 6: Introduction to IP

Instructor: Mansour Rousta Zadeh

Chapter 6 Objectives

The Following CompTIA Network+ Exam Objectives Are Covered in This Chapter:

- 1.1 Explain the function of common networking protocols
 - TCP
 - FTP
 - UDP
 - TCP/IP suite
 - DHCP
 - TFTP
 - DNS
 - HTTP(S)
 - ARP
 - SIP (VoIP)
 - RTP (VoIP)
 - SSH
 - POP3
 - NTP
 - IMAP4
 - TELNET
 - SMTP
 - <u>SMNP2/3</u>
 - ICMP
 - IGMP
 - TLS

Chapter 6 Objectives (cont.)

 1.2 Identify commonly used TCP and UDP default ports

TCP ports

- FTP 20, 21
- SSH 22
- <u>TELNET 23</u>
- SMTP 25
- DNS 53
- HTTP 80
- POP3 110
- NTP 123
- IMAP4 143
- HTTPS 443

UDP ports

- TFTP 69
- DNS 53
- BOOTPS/DHCP 67
- SNMP 161

Chapter 6 Objectives (cont.)

- 1.4 Given a scenario, evaluate the proper use of the following addressing technologies and addressing schemes
 - DHCP (static, dynamic APIPA)

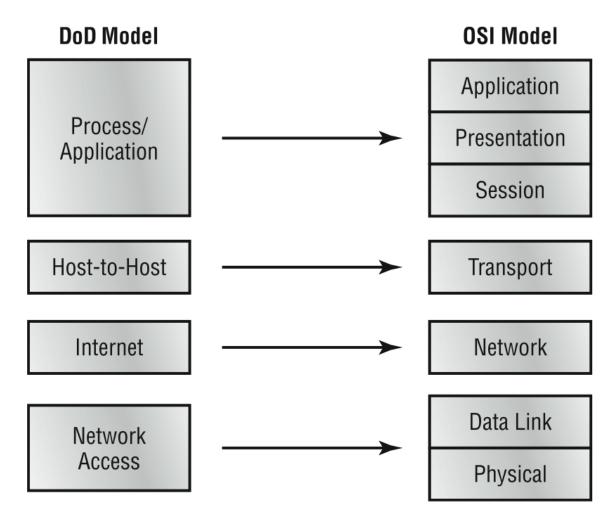
What is TCP/IP?

- Because TCP/IP is so central to working with the Internet and intranets, it's essential for you to understand it in detail.
- TCP/IP first came on the scene in 1973. Later, in 1978, it was divided into two distinct protocols: TCP and IP.
- Then, back in 1983, TCP/IP replaced the Network Control Protocol (NCP) and was authorized as the official means of data transport for anything connecting to ARPAnet, the Internet's ancestor that was created by ARPA, the DoD's Advanced Research Projects Agency way back in 1957 in reaction to the Soviet's launching of Sputnik.
- ARPA was soon re-dubbed DARPA, and it was divided into ARPAnet and MILNET (also in 1983); both were finally dissolved in 1990.

TCP/IP History

- Most of the development work on TCP/IP happened at UC Berkeley in Northern California, where a group of scientists were simultaneously working on the Berkeley version of UNIX, which soon became known as the BSD, or Berkeley Software Distribution series of UNIX versions.
- Of course, because TCP/IP worked so well, it was packaged into subsequent releases of BSD UNIX and offered to other universities and institutions if they bought the distribution tape.
- All of this led to the DoD model....

DoD Model


The DoD model is basically a condensed version of the OSI model—it's composed of four, instead of seven, layers:

- Process/Application layer
- Host-to-Host layer
- Internet layer
- Network Access layer
- The figure on the next slide shows a comparison of the DoD model and the OSI reference model. As you can see, the two are similar in concept, but each has a different number of layers with different names.
- However, the DoD and OSI are so similar that the layer names are actually interchangeable.

DoD Model

TCP/IP Protocol Suite

DoD Model

Process/	
Application	

Telnet	FTP	LPD	SNMP
TFTP	SMTP	NFS	X Window

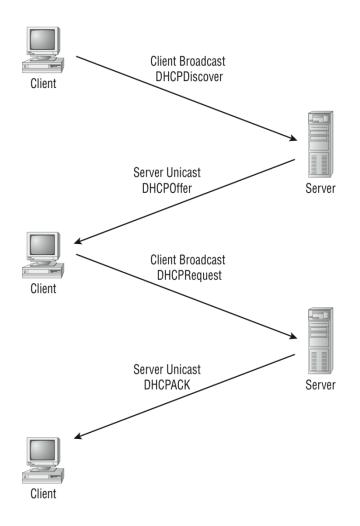
Host-to-Host

Internet

ICMP	ARP	RARP

Network Access

Ethernet	Fast Ethernet	Token Ring	FDDI
----------	------------------	---------------	------


TCP/IP Protocols (cont.)

- POP
- IMAP4
- TLS
- SIP
- RTP
- SSH
- HTTP
- HTTPS
- NTP
- NNTP
- LDAP
- IGMP
- DNS
- DHCP

DHCP Client four-step process

TCP Segment

Bit 0 Bit 15 Bit 16 Bi				Bit 31
Source port (16) Destination port (16)			Destination port (16)	<u> </u>
Sequence number (32)				
	Acknowledgment number (32)			
Header length (4) Reserved (6) Code bits (6) Window (16)				
	Checksum (16)		Urgent (16)	
Options (0 or 32 if any)				•
		Data (varies)	

UDP Segment

Bit 0	Bit 15	Bit 16	Bit 31
Source port	(16)	Destination port (16)	6_
Length (1	6)	Checksum (16)	Bytes
Data (if any)			

TCP and UDP

Table 6.1: Key Features of TCP and UDP

TCP

Sequenced

Reliable

Connection-oriented

Virtual circuit

High overhead

Acknowledgments

Windowing flow control

UDP

Unsequenced

Unreliable

Connectionless

No virtual circuit

Low overhead

No acknowledgment

No windowing or flow

Port Number Examples

Table 6.2: Key Protocols That Use TCP and UDP

TCP UDP

Telnet 23 SNMP 161 SMTP 25 TFTP 69

HTTP 80 DNS 53

FTP 20, 21 BOOTPS/DHCP 67

DNS 53

HTTPS 443

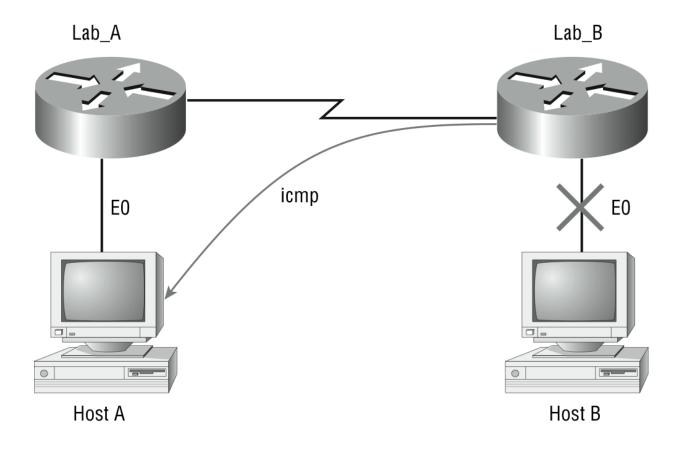
SSH 22

POP3 110

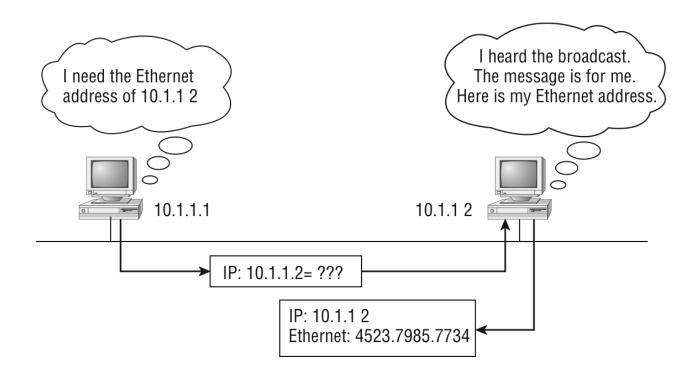
NTP 123

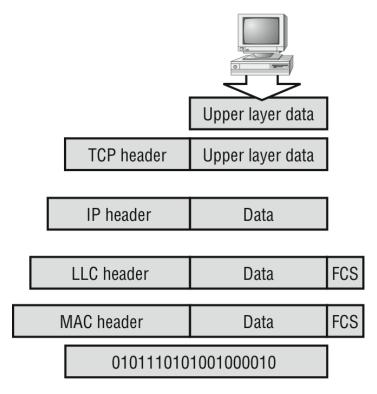
IMAP4 143

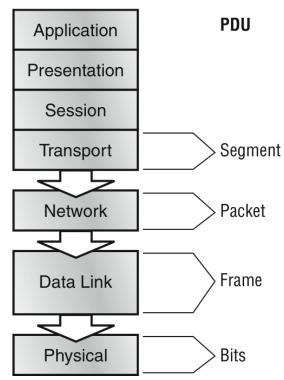
IP Header


Bit 0		Bit 15	Bit 16		Bit 31
Version (4)	Header length (4)	Priority and Type of Service (8)	Total length (16)		
	Identification (16) Flags (3) Fragment offset (13)		Fragment offset (13)		
Time to Live (8)		Protocol (8)	Header checksum (16)		
Source IP address (32)					
Destination IP address (32)					
Options (0 or 32 if any)					
Data (varies if any)					

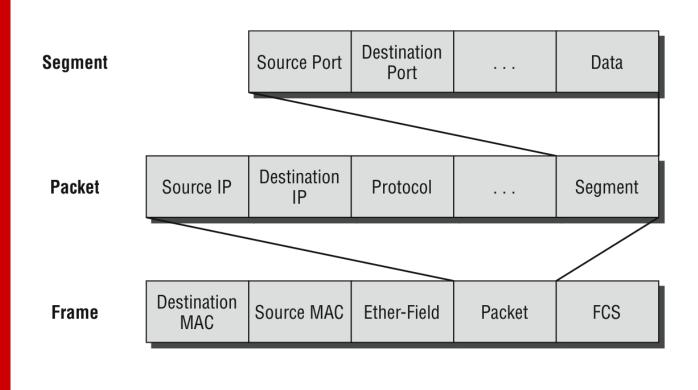
ICMP Example


EO on Lab B is down. Host A is trying to communicate to Host B. What happens?

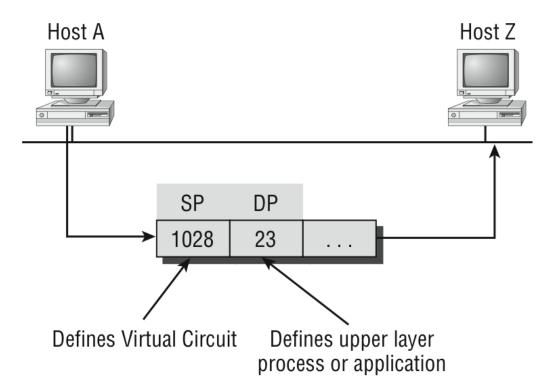

ARP Example



Data Encapsulation



Protocol Data Units


Bit 1011011100011110000

Port Numbers at the Transport Layer

Summary

- Summary
- Exam Essentials Section
- Written Labs
- Review Questions

