

Todd Lammle's CompTIA Network+ Chapter 3: Networking Topologies, connectors and Wiring Standards Instructor: Mansour Rousta Zadeh

SYBEX"

Chapter 3: Objectives

2.1 Categorize standard cable types and their properties

- <u>Type:</u>
 - CAT3, CAT5, CAT5e, CAT6
 - <u>STP, UTP</u>
 - Multimode fiber, single-mode fiber
 - <u>Coaxial</u>
 - <u>RG-59</u>
 - <u>RG-6</u>
 - <u>Serial</u>
 - Plenum vs. Non-plenum
 - Properties:
 - Transmission speeds
 - Distance
 - <u>Duplex</u>
 - Noise immunity (security, EMI)
 - Frequency

2.2 Identify common connector types

- <u>RJ-11</u>
- <u>RJ-45</u>
- <u>BNC</u>
- <u>SC</u>
- <u>ST</u>
- <u>LC</u>
- <u>RS-232</u>

Chapter 3 Objectives (cont.)

2.4 Given a scenario, differentiate and implement appropriate wiring standards

- <u>568A</u>
- <u>568B</u>
- Straight vs. cross-over
- <u>Rollover</u>
- Loopback

2.8 Install components of wiring distribution

- Vertical and horizontal cross connects
- Patch panels
- <u>66 block</u>
- <u>MDFs</u>
- <u>IDFs</u>
- <u>25 pair</u>
- <u>100 pair</u>
- <u>110 block</u>
- <u>Demarc</u>
- Demarc extension
- <u>Smart jack</u>
- Verify wiring installation
- Verify wiring termination

SYBEX

Physical Media

Let's take a look at the three types of popular cables used in modern networking designs:

- Coaxial
- Twisted pair
- Fiber optic

SYBEX"

Coax

- *Coaxial* cable, referred to as *coax*, contains a center conductor made of copper that's surrounded by a plastic jacket with a braided shield over it.
- A plastic such as polyvinyl chloride (PVC, commonly known as Teflon) covers this metal shield.
- The Teflon-type covering is frequently referred to as a *plenum-rated coating*, and it's often mandated by local or municipal fire code when cable is hidden in walls and ceilings.

Thinnet Coax

BNC Connectors

Female

Twisted-Pair Cable

- Twisted-pair cable consists of multiple individually insulated wires that are twisted together in pairs.
- Sometimes a metallic shield is placed around them; hence the name *shielded twisted-pair (STP)*.
- Cable without outer shielding is called *unshielded twisted-pair (UTP)*, and it's used in twisted-pair Ethernet (10Base-T, 100Base-TX, 1000Base-TX) networks.
- So why are the wires in this cable type twisted? Because when electromagnetic signals are conducted on copper wires in close proximity—like inside a cable—it causes interference called *crosstalk*. Twisting two wires together as a pair minimizes interference and even protects against interference from outside sources.

SYBEX"

Unshielded Twisted-pair

This cable type is the most common today for the following reasons:

- It's cheaper than other types of cabling.
- It's easy to work with.
- It allows transmission rates that were impossible 10 years ago.
- UTP cable is rated in these categories:
 - Cat1
 - Cat2
 - Cat3
 - Cat4
 - Cat5
 - Cat5e
 - cat6

Cat 5e UTP Cable

RJ Connectors

Fiber Optic

- Because fiber-optic cable transmits digital signals using light impulses rather than electricity, it's immune to EMI and RFI.
- The cable itself comes in either singlemode fiber (SMF) or multimode fiber (MMF); the difference between them is in the number of light rays (the number of signals) they can carry. Multimode fiber is most often used for shorterdistance applications and single-mode fiber for spanning longer distances.

Fiber Optic

Although fiber-optic cable may sound like the solution to many problems, it has pros and cons just like the other cable types.

Here are the pros:

- Is completely immune to EMI and RFI
- Can transmit up to 40 kilometers (about 25 miles) And here are the cons:
- Is difficult to install
- Is more expensive then twisted-pair
- Troubleshooting equipment is more expensive then twisted-pair test equipment
- Is harder to troubleshoot

ST Connector Examples

SC Connector Examples

MT-RJ and LC Fiber Connectors

Wiring Standards

There are different types of Ethernet wiring standards available:

- Straight-through cable (586A)
- Crossover cable (586B)
- Rolled cable (rollover)
- Hardware loopback

Straight-through Ethernet Cable

Hub/Switch

Host

Crossover Cable

Hub/Switch

Hub/Switch

Rollover/Rolled Cable

Host

Router/Switch

Hardware Loopback Plug

In a loopback, pins 1 & 3 and pins 2 & 6 are connected

Summary

- Summary
- Exam Essentials Section
- Written Labs
- Review Questions

