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Introduction 

 Growth of the Internet 

 Network capacity: A scarce resource 

 Good Service 

 Large-bandwidth links  -> Readily handled 
(Fiber optic links) 

 High router data throughput  -> Readily 
handled (Switching technology) 

 High packet forwarding rates  -> Key factor 
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IP Routing 

 Packet forwarding tasks 

 Packet header encapsulation and decapsulation 

 Updating TTL field 

 Checking for errors 

 … 

 IP route lookup -> Dominates the processing 
time 
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IP Routing – Classful and Classless 
 Classful 

 3 Classes: A, B, and C 

 2 Levels of hierarchy 

 Wastes address space 

 Classless Interdomain Routing (CIDR) 

 Arbitrary aggregation 

 Arbitrary length for host and network fields 

 Routing entry: <prefix/length> pair 

 <12.0.54.8/32> 

 <12.0.54.0/24> 

 <12.0.0.0/16> 

 Efficient routing table size 

 Needs to find the longest match 

 Packet destination: 12.0.54.2 

 Matches: <12.0.54.0/24>, <12.0.0.0/16> 

 <12.0.54.0/24> is used 

 Makes IP route lookup a bottleneck 
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Architecture of generic routers 

 With forwarding engines 

 Packet headers go to the forwarding 
engines 

 Forwarding engines determine the 
output interface to send the packet 

 With processing power on 
interface 

 Input interfaces determine the output 
interface to send the packet 

 Forwarding tables 

 Forwarding engine and input 
interfaces 

 Need not be dynamic 

 Optimized for fast lookups 

 Network processor 

 Dynamic and up-to-date 
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IP route lookup design 

 Goals 

 Minimize time (primary goal) 

 Minimize the number of memory accesses 

 Minimize the size of the data structure 

 Minimize instructions needed 

 Aligned data structures 

 

 

6 



Route lookup structure 

 IP address space 

 A binary tree with depth 32 

 232 leaves 

 <prefix/length> pair 

 Prefix defines a path in the tree 

 Length says how deep the path goes in the tree 

 All IP addresses in the subtree are routed according that 
entry 

 Longest matching concept 

 Subtrees of entries e1 
 and e2 overlap 

 e1 is hidden by e2 for  
addresses in the range r 
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IP route lookup and caching 

 Using caching techniques for IP route 
lookup 

 Relies on locality of destination address stream 

 There is not enough locality for backbone 
routers 

 Not a good solution for current backbone 
routers 
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Trie structure 

 Represents prefixes  
of different lengths 

 1-bit trie 

 Left link: 0 

 Right link: 1 

 Search 

 Start from root, move to left or right if the current bit of 
the address is 0 or 1 respectively 

 If a node containing a prefix mark (*) is seen, store it 
somewhere as the longest match up to now 

 Addition 

 Follow the path and create new nodes if needed and finally 
mark the last node as a prefix 

 Deletion 

 Follow the path and delete the last node and its parents 
until a marked node or a node with another child is seen 9 
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Trie level compression 

 1-bit trie: worst case of 32 
memory accesses 

 Multibit trie (n-bit trie) 

 n bits is checked at each level 

 2n children for each node 

 Prefix expansion -> more 
memory usage 
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Trie path compression 

 PATRICIA trie 

 Remove nodes with one child  without prefix 

 Store the number of removed nodes (Skip 
values) 

 Only useful in sparse tries, not backbone 
routing tables 
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DIR-24-8 implementation 

 Gupta et al. 

 Two levels 

 First memory bank: 24 bits of address 

 Second memory bank: 8 bits of address 

 Performance 

 Two pipelined memory accesses per lookup 

 DRAM delay 
of 50ns => 20 mlps 

 33 Mbytes of DRAM 

 

 

 Drawbacks 

 High memory usage 

 Many memory places may need to change for an update 
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Degermark et al. scheme 

 Degermark et al. scheme 

 Large routing table in a small data structure 

 Small enough to fit in cache 

 Fast lookup in software 

 Prefix tree needs to be complete 

 Each node: 0 or 2 children 

 Expanding the tree 

 Three levels 

 Level 1: depth 1-16 

 Level 2: depth 15-24 

 Level 3: depth 25-32 
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Degermark et al. scheme 

 Level 1 of the tree 

 A bit vector 

 Representing a cut in depth 16 

 If tree continues below the cut => bit=1 (root head) 

 If a leaf is located in depth 16 or less 

 A range is spanned by that leaf in depth 16 

 The least significant bit of the range is set to 1 (genuine head) 

 Other bits are set to zero 

 For root head we store an index to NHP table 

 For genuine head we store an index to a subtree in the 
ext level   
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Degermark et al. scheme 

 Search algorithm for level 1 

 Some bit extractions, array references and additions 

 7 bytes of accesses to the memory 

 10 Kbytes of memory usage 

 (A 2D array of 5.3 Kbytes is also used, but it is shared 
among all levels) 

 Level 2 and 3 

 Some chunks indexed from the previous level 

 Each chunk: Depth of 8 (Possible 256 heads) 

 Sparse: 1-8 heads 

 Dense: 9-64 heads 

 Very dense: 65-256 heads 

 Dense and very dense chunks are searched like level 1 

 Sparse chunks are stored sorted and searched with at 
most 7 memory accesses 
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Huang et al. scheme 

 Huang et al. scheme 

 Same as DIR-24-8, but 

 Uses variable length offsets  
to consider prefix distribution 

 Compresses routing data 

 Worst case of 3 memory accesses per lookup 

 450-470 Kbytes memory usage 

 Simplest case: Direct lookup 

 Expand all prefixes to 32 bits 

 1 memory access per lookup 

 4 GBytes memory usage 
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Huang et al. scheme 

 Indirect Lookup 

 Break the address space to two levels 

 Same idea as DIR-24-8 
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Huang et al. scheme 

 Indirect lookup with variable length offsets 

 Reduces NHA sizes 
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Huang et al. scheme 

 NHA data compression 

 Redundancy 

 

 

 Compression 
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Multiway Search (Lampson et al.) 

 Standard multiway search 

 Useful for exact matching 

 Needs modification for longest matching 

 Basic idea 

 Consider 1*, 101*, 10101* prefixes 

 Pad them to become of same length 

 Binary search incorrectly fails for these addresses 

 101011, 101110, 111110 

 Two problems 

 Search may end up far away from the correct answer 

 Multiple addresses with different matching prefixes 
may end up in the same region 
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Multiway Search (Lampson et al.) 

 Considering prefixes as ranges 

 Consider each prefix as a range 

 Expand each prefix to start and end of the 
range 

 1* becomes 100000 and 111111 

 Solves the second problem 
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Multiway Search (Lampson et al.) 

 The first problem 

 A linear search is needed to find the correct 
match 
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Multiway Search (Lampson et al.) 

 How to solve the first problem 

 Precomputed pointers 

 For each row: 

 A pointer for when the binary search finishes with a 
hit ( = pointer) 

 A pointer for when the binary search finishes with a 
fail ( > pointer) 
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Multiway Search (Lampson et al.) 

 Table construction 

 A push/pop algorithm to calculate pointers 

 Prefix insertion and deletion 

 Many pointers may become invalid 

 High overhead 

 Batching may help 
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Multiway Search (Lampson et al.) 

 Partitioning the problem 

 Inspect first Y bits of the address directly 

 This points us to one of 2Y subtables 
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Multiway Search (Lampson et al.) 

 

 Mٍultiway search 

 k keys 

 2k+1 pointers per node  

 Logk+1 N comparisons (worst case) 

 As large k as possible that fits in the CPU 
cache line 

 For Pentium Pro: k=5 
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Multiway search (Lampson et al.) 

 

 Results 

 For 30000 entries 

 Considering 16 bits initial array 

 Worst case subtable: 336 entries 

 => Worst case of 4 memory accesses 

 On Pentium Pro 200 Mhz 

 490ns worst case search time per lookup 

 130ns average time per lookup 

 1.7MB memory usage 
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Two- trie structure 

 Two- trie structure 

 Nodes representing front and rear part of the prefix are 
shared 

 Originally by Aoe et al. (general) 

 New version by Kijkanjanarat et al. for IP lookup 

 K-bit two trie 

 Consists of two K-bit tries 

 Front trie 

 Rear trie 

 Joining leaf nodes in the middle 

 Both trie can be traversed in both direcrtions 

 Forward direction : from root to child 

 Backward direction: from child to root 
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Two- trie structure 

 Assume prefix X of length Y bits 

 X is represented as <x(0).x(1)…x(N)> 

 x(i), (i between 0 and N-1) is the K-bit part of 
prefix X 

 x(N) is a special symbol #  ,  N = [Y/K] 

 If Y is not a multiple of K, the prefix will be 
expanded to a set of prefixes 
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Two- trie structure 

 An example 

 Triangles: Nodes of the rear trie 

 Circles: Nodes of the front trie 

 Rectangles: Separate nodes (Leaf nodes of the 
front trie 
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Two- trie structure 
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Two- trie structure 

 Performance 

 Memory accesses 

 

 

 

 Memory usage 
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