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Introduction 

 Growth of the Internet 

 Network capacity: A scarce resource 

 Good Service 

 Large-bandwidth links  -> Readily handled 
(Fiber optic links) 

 High router data throughput  -> Readily 
handled (Switching technology) 

 High packet forwarding rates  -> Key factor 
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IP Routing 

 Packet forwarding tasks 

 Packet header encapsulation and decapsulation 

 Updating TTL field 

 Checking for errors 

 … 

 IP route lookup -> Dominates the processing 
time 
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IP Routing – Classful and Classless 
 Classful 

 3 Classes: A, B, and C 

 2 Levels of hierarchy 

 Wastes address space 

 Classless Interdomain Routing (CIDR) 

 Arbitrary aggregation 

 Arbitrary length for host and network fields 

 Routing entry: <prefix/length> pair 

 <12.0.54.8/32> 

 <12.0.54.0/24> 

 <12.0.0.0/16> 

 Efficient routing table size 

 Needs to find the longest match 

 Packet destination: 12.0.54.2 

 Matches: <12.0.54.0/24>, <12.0.0.0/16> 

 <12.0.54.0/24> is used 

 Makes IP route lookup a bottleneck 
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Architecture of generic routers 

 With forwarding engines 

 Packet headers go to the forwarding 
engines 

 Forwarding engines determine the 
output interface to send the packet 

 With processing power on 
interface 

 Input interfaces determine the output 
interface to send the packet 

 Forwarding tables 

 Forwarding engine and input 
interfaces 

 Need not be dynamic 

 Optimized for fast lookups 

 Network processor 

 Dynamic and up-to-date 
5 

Switching

 Fabric

Forwarding Engine Interface

Forwarding Engine

Forwarding Engine

Interface

Interface

Network

Processor

Switching

 Fabric

Interface

Interface

Interface

Network

Processor

Interface

Interface

Interface



IP route lookup design 

 Goals 

 Minimize time (primary goal) 

 Minimize the number of memory accesses 

 Minimize the size of the data structure 

 Minimize instructions needed 

 Aligned data structures 
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Route lookup structure 

 IP address space 

 A binary tree with depth 32 

 232 leaves 

 <prefix/length> pair 

 Prefix defines a path in the tree 

 Length says how deep the path goes in the tree 

 All IP addresses in the subtree are routed according that 
entry 

 Longest matching concept 

 Subtrees of entries e1 
 and e2 overlap 

 e1 is hidden by e2 for  
addresses in the range r 
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IP route lookup and caching 

 Using caching techniques for IP route 
lookup 

 Relies on locality of destination address stream 

 There is not enough locality for backbone 
routers 

 Not a good solution for current backbone 
routers 
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Trie structure 

 Represents prefixes  
of different lengths 

 1-bit trie 

 Left link: 0 

 Right link: 1 

 Search 

 Start from root, move to left or right if the current bit of 
the address is 0 or 1 respectively 

 If a node containing a prefix mark (*) is seen, store it 
somewhere as the longest match up to now 

 Addition 

 Follow the path and create new nodes if needed and finally 
mark the last node as a prefix 

 Deletion 

 Follow the path and delete the last node and its parents 
until a marked node or a node with another child is seen 9 
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Trie level compression 

 1-bit trie: worst case of 32 
memory accesses 

 Multibit trie (n-bit trie) 

 n bits is checked at each level 

 2n children for each node 

 Prefix expansion -> more 
memory usage 
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Trie path compression 

 PATRICIA trie 

 Remove nodes with one child  without prefix 

 Store the number of removed nodes (Skip 
values) 

 Only useful in sparse tries, not backbone 
routing tables 
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DIR-24-8 implementation 

 Gupta et al. 

 Two levels 

 First memory bank: 24 bits of address 

 Second memory bank: 8 bits of address 

 Performance 

 Two pipelined memory accesses per lookup 

 DRAM delay 
of 50ns => 20 mlps 

 33 Mbytes of DRAM 

 

 

 Drawbacks 

 High memory usage 

 Many memory places may need to change for an update 
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Degermark et al. scheme 

 Degermark et al. scheme 

 Large routing table in a small data structure 

 Small enough to fit in cache 

 Fast lookup in software 

 Prefix tree needs to be complete 

 Each node: 0 or 2 children 

 Expanding the tree 

 Three levels 

 Level 1: depth 1-16 

 Level 2: depth 15-24 

 Level 3: depth 25-32 
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Degermark et al. scheme 

 Level 1 of the tree 

 A bit vector 

 Representing a cut in depth 16 

 If tree continues below the cut => bit=1 (root head) 

 If a leaf is located in depth 16 or less 

 A range is spanned by that leaf in depth 16 

 The least significant bit of the range is set to 1 (genuine head) 

 Other bits are set to zero 

 For root head we store an index to NHP table 

 For genuine head we store an index to a subtree in the 
ext level   

14 



Degermark et al. scheme 

 Search algorithm for level 1 

 Some bit extractions, array references and additions 

 7 bytes of accesses to the memory 

 10 Kbytes of memory usage 

 (A 2D array of 5.3 Kbytes is also used, but it is shared 
among all levels) 

 Level 2 and 3 

 Some chunks indexed from the previous level 

 Each chunk: Depth of 8 (Possible 256 heads) 

 Sparse: 1-8 heads 

 Dense: 9-64 heads 

 Very dense: 65-256 heads 

 Dense and very dense chunks are searched like level 1 

 Sparse chunks are stored sorted and searched with at 
most 7 memory accesses 
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Huang et al. scheme 

 Huang et al. scheme 

 Same as DIR-24-8, but 

 Uses variable length offsets  
to consider prefix distribution 

 Compresses routing data 

 Worst case of 3 memory accesses per lookup 

 450-470 Kbytes memory usage 

 Simplest case: Direct lookup 

 Expand all prefixes to 32 bits 

 1 memory access per lookup 

 4 GBytes memory usage 
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Huang et al. scheme 

 Indirect Lookup 

 Break the address space to two levels 

 Same idea as DIR-24-8 
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Huang et al. scheme 

 Indirect lookup with variable length offsets 

 Reduces NHA sizes 
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Huang et al. scheme 

 NHA data compression 

 Redundancy 

 

 

 Compression 
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Multiway Search (Lampson et al.) 

 Standard multiway search 

 Useful for exact matching 

 Needs modification for longest matching 

 Basic idea 

 Consider 1*, 101*, 10101* prefixes 

 Pad them to become of same length 

 Binary search incorrectly fails for these addresses 

 101011, 101110, 111110 

 Two problems 

 Search may end up far away from the correct answer 

 Multiple addresses with different matching prefixes 
may end up in the same region 
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Multiway Search (Lampson et al.) 

 Considering prefixes as ranges 

 Consider each prefix as a range 

 Expand each prefix to start and end of the 
range 

 1* becomes 100000 and 111111 

 Solves the second problem 
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Multiway Search (Lampson et al.) 

 The first problem 

 A linear search is needed to find the correct 
match 
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Multiway Search (Lampson et al.) 

 How to solve the first problem 

 Precomputed pointers 

 For each row: 

 A pointer for when the binary search finishes with a 
hit ( = pointer) 

 A pointer for when the binary search finishes with a 
fail ( > pointer) 
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Multiway Search (Lampson et al.) 

 Table construction 

 A push/pop algorithm to calculate pointers 

 Prefix insertion and deletion 

 Many pointers may become invalid 

 High overhead 

 Batching may help 
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Multiway Search (Lampson et al.) 

 Partitioning the problem 

 Inspect first Y bits of the address directly 

 This points us to one of 2Y subtables 
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Multiway Search (Lampson et al.) 

 

 Mٍultiway search 

 k keys 

 2k+1 pointers per node  

 Logk+1 N comparisons (worst case) 

 As large k as possible that fits in the CPU 
cache line 

 For Pentium Pro: k=5 
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Multiway search (Lampson et al.) 

 

 Results 

 For 30000 entries 

 Considering 16 bits initial array 

 Worst case subtable: 336 entries 

 => Worst case of 4 memory accesses 

 On Pentium Pro 200 Mhz 

 490ns worst case search time per lookup 

 130ns average time per lookup 

 1.7MB memory usage 
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Two- trie structure 

 Two- trie structure 

 Nodes representing front and rear part of the prefix are 
shared 

 Originally by Aoe et al. (general) 

 New version by Kijkanjanarat et al. for IP lookup 

 K-bit two trie 

 Consists of two K-bit tries 

 Front trie 

 Rear trie 

 Joining leaf nodes in the middle 

 Both trie can be traversed in both direcrtions 

 Forward direction : from root to child 

 Backward direction: from child to root 
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Two- trie structure 

 Assume prefix X of length Y bits 

 X is represented as <x(0).x(1)…x(N)> 

 x(i), (i between 0 and N-1) is the K-bit part of 
prefix X 

 x(N) is a special symbol #  ,  N = [Y/K] 

 If Y is not a multiple of K, the prefix will be 
expanded to a set of prefixes 
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Two- trie structure 

 An example 

 Triangles: Nodes of the rear trie 

 Circles: Nodes of the front trie 

 Rectangles: Separate nodes (Leaf nodes of the 
front trie 
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Two- trie structure 
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Two- trie structure 

 Performance 

 Memory accesses 

 

 

 

 Memory usage 
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