IP Route Lookups

- Growth of the Internet
- Network capacity: A scarce resource
- Good Service
- Large-bandwidth links -> Readily handled (Fiber optic links)
- High router data throughput -> Readily handled (Switching technology)
- High packet forwarding rates -> Key factor
\square Packet forwarding tasks
- Packet header encapsulation and decapsulation
- Updating TTL field
- Checking for errors
- IP route lookup -> Dominates the processing time

IP Routing - Classful and Classless

- Classful
- 3 Classes: A, B, and C
- 2 Levels of hierarchy
- Wastes address space
- Classless Interdomain Routing (CIDR)
- Arbitrary aggregation
- Arbitrary length for host and network fields
- Routing entry: <prefix/length> pair

$$
\begin{aligned}
& \square<12.0 .54 .8 / 32> \\
& \square<12.0 .54 .0 / 24> \\
& \quad<12.0 .0 .0 / 16>
\end{aligned}
$$

- Efficient routing table size
- Needs to find the longest match
\square Packet destination: 12.0.54.2

- Matches: <12.0.54.0/24>, <12.0.0.0/16>
- <12.0.54.0/24> is used
- Makes IP route lookup a bottleneck

Architecture of generic routers

- With forwarding engines
- Packet headers go to the forwarding engines
- Forwarding engines determine the output interface to send the packet

Fonading Eligion

Forwarding Engine

- With processing power on interface
- Input interfaces determine the output interface to send the packet
- Forwarding tables
- Forwarding engine and input interfaces
\square Need not be dynamic
- Optimized for fast lookups

- Network processor
\square Dynamic and up-to-date

IP route lookup design

\square Goals

- Minimize time (primary goal)
\square Minimize the number of memory accesses
- Minimize the size of the data structure
- Minimize instructions needed
- Aligned data structures

Route lookup structure

- IP address space
- A binary tree with depth 32
- 232 leaves
- <prefix/length> pair

- Prefix defines a path in the tree
- Length says how deep the path goes in the tree
- All IP addresses in the subtree are routed according that entry
- Longest matching concept
- Subtrees of entries e1 and e2 overlap
$\square \mathrm{e} 1$ is hidden by e2 for addresses in the range r

IP route lookup and caching

- Using caching techniques for IP route lookup
- Relies on locality of destination address stream
- There is not enough locality for backbone routers
- Not a good solution for current backbone routers
- Represents prefixes of different lengths
- 1-bit trie
- Left link: 0
- Right link: 1
- Search

- Start from root, move to left or right if the current bit of the address is 0 or 1 respectively
\square If a node containing a prefix mark (*) is seen, store it somewhere as the longest match up to now
- Addition
- Follow the path and create new nodes if needed and finally mark the last node as a prefix
- Deletion
- Follow the path and delete the last node and its parents until a marked node or a node with another child is seen

Trie level compression

- 1-bit trie: worst case of 32 memory accesses
- Multibit trie (n-bit trie)
- n bits is checked at each level
- 2n children for each node
- Prefix expansion -> more memory usage

1^{*}	(a)	(b) (a)
10*	(b)	
000*	(c) $\longrightarrow \begin{aligned} & 0000^{*} \\ & 0001^{*}\end{aligned}$	(c) (c)
110*	(d) $\longrightarrow 1100^{*}{ }^{\text {1101 }}$	(d)
1000*	(e)	
1101*	(f)	
1111*	(g)	
00001*	$(\mathrm{h}) \longrightarrow \begin{aligned} & 000010^{*} \\ & 000011^{*}\end{aligned}$	(h) (h)

Trie path compression

- PATRICIA trie
- Remove nodes with one child without prefix
- Store the number of removed nodes (Skip values)
■ Only useful in sparse tries, not backbone routing tables

DIR-24-8 implementation

- Gupta et al.
- Two levels
- First memory bank: 24 bits of address
- Second memory bank: 8 bits of address
- Performance
- Two pipelined memory accesses per lookup
- DRAM delay of $50 \mathrm{~ns}=>20 \mathrm{mlps}$
- 33 Mbytes of DRAM
- Drawbacks
- High memory usage

- Many memory places may need to change for an update

Degermark et al. scheme

- Degermark et al. scheme
- Large routing table in a small data structure
- Small enough to fit in cache
- Fast lookup in software
- Prefix tree needs to be complete
- Each node: 0 or 2 children
- Expanding the tree
- Three levels
- Level 1: depth 1-16
- Level 2: depth 15-24
- Level 3: depth 25-32

Degermark et al. scheme

- Level 1 of the tree
- A bit vector
- Representing a cut in depth 16
- If tree continues below the cut => bit=1 (root head)
\square If a leaf is located in depth 16 or less
- A range is spanned by that leaf in depth 16
- The least significant bit of the range is set to 1 (genuine head)
- Other bits are set to zero
- For root head we store an index to NHP table
- For genuine head we store an index to a subtree in the ext level

Degermark et al. scheme

- Search algorithm for level 1
- Some bit extractions, array references and additions
- 7 bytes of accesses to the memory
- 10 Kbytes of memory usage
- (A 2D array of 5.3 Kbytes is also used, but it is shared among all levels)
- Level 2 and 3
- Some chunks indexed from the previous level
- Each chunk: Depth of 8 (Possible 256 heads)
- Sparse: 1-8 heads
- Dense: 9-64 heads
- Very dense: 65-256 heads
- Dense and very dense chunks are searched like level 1
- Sparse chunks are stored sorted and searched with at most 7 memory accesses

Huang et al. scheme

- Huang et al. scheme
- Same as DIR-24-8, but
\square Uses variable length offsets to consider prefix distribution
- Compresses routing data

- Worst case of 3 memory accesses per lookup
- 450-470 Kbytes memory usage
\square Simplest case: Direct lookup
- Expand all prefixes to 32 bits
- 1 memory access per lookup
- 4 GBytes memory usage

Huang et al. scheme

- Indirect Lookup

- Break the address space to two levels
- Same idea as DIR-24-8

Huang et al. scheme

- Indirect lookup with variable length offsets
 - Reduces NHA sizes

Huang et al. scheme

\square NHA data compression
 - Redundancy

- Compression

Multiway Search (Lampson et al.)

- Standard multiway search
- Useful for exact matching

- Basic idea

■ Consider 1*, 101*, 10101* prefix
\square Pad them to become of same length

- Binary search incorrectly fails for these addresses
- 101011, 101110, 111110
- Two problems
\square Search may end up far away from the correct answer
- Multiple addresses with different matching prefixes may end up in the same region

Multiway Search (Lampson et al.)

- Considering prefixes as ranges
- Consider each prefix as a range
- Expand each prefix to start and end of the range
$\square 1^{*}$ becomes 100000 and 111111
- Solves the second problem

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \longleftarrow \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}{ }_{1111110}^{10110}\right.
$$

Multiway Search (Lampson et al.)

- The first problem
- A linear search is needed to find the correct match

Multiway Search (Lampson et al.)

- How to solve the first problem
- Precomputed pointers
- For each row:
\square A pointer for when the binary search finishes with a hit (= pointer)
\square A pointer for when the binary search finishes with a fail (> pointer)

						$=$		
$P 2)$	1	0	0	0	0	0	$P 1$	$P 1$
$P 3)$	1	0	1	0	0	0	P	0
$P 3$	$P 2$							
	1	0	1	0	1	1	$P 2$	$P 3$
	1	0	1	1	1	1	$P 1$	$P 2$
	1	1	1	1	1	1	-	$P 1$

Multiway Search (Lampson et al.)

- Table construction
- A push/pop algorithm to calculate pointers
\square Prefix insertion and deletion
- Many pointers may become invalid
- High overhead
- Batching may help

Multiway Search (Lampson et al.)

- Partitioning the problem
- Inspect first Y bits of the address directly
- This points us to one of $2 Y$ subtables

Multiway Search (Lampson et al.)

- Multiway search
- k keys
- $2 k+1$ pointers per node
- Logk+1 N comparisons (w .ro

- As large k as possible that fits in the CPU cache line
- For Pentium Pro: k=5

p01	k1	p12	k2	p23	k3	p34	k4	p45	k5	p56
	p1		p2		p3		p4		p5	

Multiway search (Lampson et al.)

- Results
- For 30000 entries
- Considering 16 bits initial array
- Worst case subtable: 336 entries
- => Worst case of 4 memory accesses
- On Pentium Pro 200 Mhz
-490ns worst case search time per lookup
$\square 130$ ns average time per lookup
$\square 1.7 \mathrm{MB}$ memory usage

Two- trie structure

- Two- trie structure
- Nodes representing front and rear part of the prefix are shared
- Originally by Aoe et al. (general)
- New version by Kijkanjanarat et al. for IP lookup
- K-bit two trie
- Consists of two K-bit tries
- Front trie
- Rear trie
- Joining leaf nodes in the middle
- Both trie can be traversed in both direcrtions
- Forward direction : from root to child
\square Backward direction: from child to root

Two- trie structure

\square Assume prefix X of length Y bits

- X is represented as <x(0).x(1)...x(N)>
- $\mathrm{x}(\mathrm{i})$, (i between 0 and $\mathrm{N}-1$) is the K -bit part of prefix X
- $\mathrm{x}(\mathrm{N})$ is a special symbol \#, $\mathrm{N}=[\mathrm{Y} / \mathrm{K}]$
- If Y is not a multiple of K, the prefix will be expanded to a set of prefixes

Two- trie structure

-An example

- Triangles: Nodes of the rear trie
- Circles: Nodes of the front trie
- Rectangles: Separate nodes (Leaf nodes of the front trie

Algorithm IPLookup (X)

1. Let Z be the variable that stores the next hop of the longest matching prefix. Initially Z is the default next hop.
2. Start to do an IP lookup from the root node of the front trie by matching each K-bit part of the destination address X of the packet with prefixes in the two-trie structure.
3. If there is a match, the traversal is moved to the child node at the next level of the front trie.
4. Whenever a new front node is arrived at, the algorithm first looks for its child node corresponding to the symbol \# (which must be the separate node). If the node is found, it means that the two-trie structure contains a longer matching prefix, so the variable Z is updated with the next hop value of this prefix retrieved from the separate node.
5. When the separate node is reached, matching continues to the rear trie by using a pointer at the separate node (shown as a dashed line in Fig. 13.29). Matching on the rear trie is done in the backward direction.
6. The algorithm stops whenever
(a) a mismatch is detected somewhere in the structure (in such a case, the current value of Z is returned as the next hop), or
(b) the traversal reaches the root node of the rear trie (no mismatch is detected). This means that the destination address X of the packet is actually stored as a prefix in the structure. The variable Z is updated with the next hop value of the prefix stored at the separate node we previously visited and returned as the output of the function.

Two- trie structure

- Performance

- Memory accesses

Structure	Bits for Each Level	Average Case
Two-trie	$8,8,8$, and 8	3.6
Two-trie	$1,6,8$ and 8	1.6
Standard trie	8,8, and 8	2.1

- Memory usage

Structure	Bits for Each Level	Memory Requirements (Mbyte)
Two-trie	$8,8,8$ and 8	11.6
Two-trie	16,8 , and 8	11.6
Standard trie	8,8, and 8	16.0

