IP Route Lookups

Introduction

0 Growth of the Internet
0 Network capacity: A scarce resource

0 Good Service

= Large-bandwidth links -> Readily handled
(Fiber optic links)

= High router data throughput -> Readily
handled (Switching technology)

= High packet forwarding rates -> Key factor

IP Routing

0 Packet forwarding tasks
= Packet header encapsulation and decapsulation
= Updating TTL field
= Checking for errors

= IP route lookup -> Dominates the processing
time

IP Routing — Classful and Classless

o Classful
m 3 Classes: A, B, and C
m 2 Levels of hierarchy
= Wastes address space

o Classless Interdomain Routing (CIDR)

Arbitrary aggregation
Arbitrary length for host and network fields
Routing entry: <prefix/length> pair

<120548/32> Class A |C,i“"_:lr T: 24 T
< 120540/24> \ Metwark " Host j
<12000/16> -—14 i 16 o

Class B |1D|
1

Efficient routing table size

MNetwork

Host

21

Needs to find the longest match

Class C | 110‘}-
\

Packet destination: 12.0.54.2

Metwork

= Matches: <12.0.54.0/24>, <12.0.0.0/16>
= <12.0.54.0/24> is used

Makes IP route lookup a bottleneck

Host

Architecture of generic routers

o With forwarding engines

= Packet headers go to the forwarding
engines
= Forwarding engines determine the
output interface to send the packet
o With processing power on
interface

Forwarding Engine

Forwarding Engine ———

Switching
Fabric

Forwarding Engine

= Input interfaces determine the output

interface to send the packet

o Forwarding tables

= Forwarding engine and input
interfaces
Need not be dynamic
Optimized for fast lookups
= Network processor
Dynamic and up-to-date

5
=
®
=4

=3
=
@
=3

5
=
@
=4

Switching
Fabric

IP route lookup design

O Goals

= Minimize time (primary goal)
Minimize the number of memory accesses
Minimize the size of the data structure

= Minimize instructions needed
= Aligned data structures

Route lookup structure

o IP address space
= A binary tree with depth 32 depth 32
m 232 leaves

o <prefix/length> pair
= Prefix defines a path in the tree

= Length says how deep the path goes in the tree

= All IP addresses in the subtree are routed according that
entry

= Longest matching concept

Subtrees of entries el
and e2 overlap

el is hidden by e2 for
addresses in the range r

2% leaves (IP Addressess)

IP route lookup and caching

0 Using caching techniques for IP route
lookup
= Relies on locality of destination address stream

= There is not enough locality for backbone
routers

= Not a good solution for current backbone
routers

Trie structure

O Represents prefixes
of different lengths

o 1-bit trie
= Leftlink: O
= Right link: 1
= Search

Start from root, move to left or right if the current bit of
the address is O or 1 respectively

If a node containing a prefix mark (*) is seen, store it
somewhere as the longest match up to now

= Addition

Follow the path and create new nodes if needed and finally
mark the last node as a prefix

= Deletion

Follow the path and delete the last node and its parents
until a marked node or a node with another child is seen

q

Trie level compression

o 1-bit trie: worst case of 32
MEMOry aCCesses

o Multibit trie (n-bit trie)
= n bits is checked at each level

= 2n children for each node

= Prefix expansion -> more
memory usage

1*

10*
000*
110*
1000*
1101*
1111*
00001*

oSKQ "hTdD Q0O TY

10*

000*

110*

1000*

1101*

1111*

00001*

(8) — 10*
11*

(b)

(c) —> 0000*
0001*

(d)—— 1100*
1101*

()
()
(@)

(h)——» 000010*
000011*

(b)
@)

(c)
()

(d)
(f)

(h)
(h)

Trie path compression

0 PATRICIA trie

= Remove nodes with one child without prefix

= Store the number of removed nodes (Skip
values)

= Only useful in sparse tries, not backbone
routing tables

10*
000*
110*
1000*
1101~
1111*
00001*

R

DIR-24-8 implementation

o Gupta et al.
o Two levels

= First memory bank: 24 bits of address
= Second memory bank: 8 bits of address

O Performance

= Two pipelined memory accesses per lookup

= DRAM delay
of 50ns => 20 mlps

= 33 Mbytes of DRAM

o Drawbacks
= High memory usage

Destination

address

0

First memory
bank

(0]

Forwarding information

23

" 24

4

224 entries

Second memory

bank

>

31]

>
-

i
8

:

220 entries

= Many memory places may need to change for an updat\e“

Degermark et al. scheme

0 Degermark et al. scheme

= Large routing table in a small data structure
= Small enough to fit in cache
= Fast lookup in software o

o Prefix tree needs to be complete / — * 2

= Each node: 0 or 2 children 'i\ ;‘\ \\o

= Expanding the tree " ¢
O Three levels

= Level 1: depth 1-16

= Level 2: depth 15-24 .' |

= Level 3: depth 25-32 2“/7/-/3 Wi

Degermark et al. scheme

O Level 1 of the tree
= A bit vector

= Representing a cut in depth 16
If tree continues below the cut => bit=1 (root head)

If a leaf is located in depth 16 or less

= A range is spanned by that leaf in depth 16

= The least significant bit of the range is set to 1 (genuine head)
Other bits are set to zero

= For root head we store an index to NHP table

= For genuine head we store an index to a subtree in the
ext level

depth 16

i [edleJle [oo] [4] [][effe]lof] [] [o] [i i \ ¢
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Degermark et al. scheme

o Search algorithm for level 1
= Some bit extractions, array references and additions
= 7 bytes of accesses to the memory
= 10 Kbytes of memory usage
= (A 2D array of 5.3 Kbytes is also used, but it is shared
among all levels)
o Level 2 and 3
= Some chunks indexed from the previous level

= Each chunk: Depth of 8 (Possible 256 heads)
Sparse: 1-8 heads
Dense: 9-64 heads
Very dense: 65-256 heads
= Dense and very dense chunks are searched like level 1

= Sparse chunks are stored sorted and searched with at

most /7 memory accesses yo

Huang et al. scheme

0 Huang et al. scheme —
= Same as DIR-24-8, but ety Spread
Uses variable length offsets Excctly Matching

to consider prefix distribution [T [T weneneennnnns T 11
. 4—— Next Hop Array (4 GB) ———»
Compresses routing data

= Worst case of 3 memory accesses per lookup
= 450-470 Kbytes memory usage

0 Simplest case: Direct lookup
= Expand all prefixes to 32 bits
= 1 memory access per lookup
= 4 GBytes memory usage

1A

Huang et al. scheme

o Indirect Lookup

= Break the address space to two levels
= Same idea as DIR-24-8

=16 Bits ™ 16 Bits Value < 256 ==> Next Hop (Without NHA)
IPv4 Address | Segment Offset Value > 255 ==> Painter
Format

— | /' Pointer/Next Hop
«— 32Bits —»

|| Next Hop

[Point to Next Hop Array

Segmentation Table
(64K Entries)

Offset

64 KB
Next Hop Array Next Hop Array Next Hop Array Next Hop Array Next Hop Array

\RY%

Huang et al. scheme

o Indirect lookup with variable length offsets

» Reduces NHA sizes

k Bits 16-k Bits
Offset(k) Remainder Bits
=16 Bits—™ Value < 256 ==> Next Hop (Without NHA)
IPv4 Address | Segment | /| Value > 255 ==> Pointer
Format

/

Pointer/Next Hop

D Next Hop

. Point to Next Hop Array

Segmentation Table
(64K Entries)

| Offsettk,) |

| Offset(k,) |

Offset(k,)

2k Bytes 2% Bytes
Next Hop Array Next Hop Array

2% Bytes
Next Hop Array

— 28 Bits ——m

4 Bits lo indicate |
Offset length - 1

Offset(k,,,)

2ka Bytes
Next Hop Array

2k Bytes
Next Hop Array

YA

Huang et al. scheme

o NHA data compression
= Redundancy

Next Hop Array
12]2]2]2[2]2[2]2]8[8[8]8/8]8/8[8/8[8[88(8/8(8[8[7[7[7[7]6/6]6]6] rurmrens

= Compression

Next Hop Array

[2122]2]2]2 2[2[8[8[8]8 8]8]8[8[8[8[8]8]8 8 8[8]7 77 7[6]6]6]6] warereen: 2]2]2]2]
Compression Bit Map
1000000010000 00 000000000100 0{100 0 seasaasasx 1000

\ o
Compressed Next Hop AWV
EE

)4

Multiway Search (Lampson et al.)

0 Standard multiway search

= Useful for exact matching 1000006 oy
e . \\here
= Needs modification for longest m¢’ %7909~
o rot1o010
O BaS|C |dea " 101011) J

binary search _g 01110/

= Consider 1*, 101*, 10101* prefix ™" s

Pad them to become of same length
Binary search incorrectly fails for these addresses
= 101011, 101110, 111110
= Two problems
Search may end up far away from the correct answer

Multiple addresses with different matching prefixes
may end up in the same region

Multiway Search (Lampson et al.)

o Considering prefixes as ranges
= Consider each prefix as a range

= Expand each prefix to start and end of the
range
1* becomes 100000 and 111111

= Solves the second problem

——1 00 000
—1 0 10 0 0
101010

L1 0 1 0 1 e 101011
10 1 ~— 101110

111
11111

- 111110
1

AR

Multiway Search (Lampson et al.)

O The first problem
» A linear search is needed to find the correct
match

narrowest enclosing
\ range containing A

\
\
\
\
\

- Acldress A

»

rTrTrr- rr

-
-

T T IT.

Yy

Multiway Search (Lampson et al.)

o How to solve the first problem

= Precomputed pointers

= For each row:
A pointer for when the binary search finishes with a
hit (= pointer)
A pointer for when the binary search finishes with a
fail (> pointer)

p) 1.0 0 0 0 0 P1 P1
P2 1. 0 1 0 0 0 F? Pz
p3y) 1.0 1 0 1 0 P3 P3
7010 1 1 P2 P3
170111 1 Pt P2
T 11111 - P1

Multiway Search (Lampson et al.)

0 Table construction
= A push/pop algorithm to calculate pointers

O Prefix insertion and deletion

= Many pointers may become invalid
= High overhead
= Batching may help

[— Prefix P
Prefix Q

Ir~IrIr-

=
"Il T

R

Y¢

Multiway Search (Lampson et al.)

o Partitioning the problem
= Inspect first Y bits of the address directly
= This points us to one of 2Y subtables

pointer to binary tree

T Binary
Tree
of keys
starting with
X

Yo

Multiway Search (Lampson et al.)

o Multiway search NN
= k keys VR
= 2k+1 pointers per node AR NN
= Logk+1 N comparisons (w.. L. L. L LI 1 L
= As large k as possible that fits in the CPU
cache line

m For Pentium Pro: k=5

k1 k2 k3 k4 ks
p0 pl2 P23 p34 pds P56

pi p p3 pd ps

A\

Multiway search (Lampson et al.)

0 Results
= For 30000 entries
= Considering 16 bits initial array
= Worst case subtable: 336 entries
= => Worst case of 4 memory accesses

2 On Pentium Pro 200 Mhz

490ns worst case search time per lookup
130ns average time per lookup
1.7MB memory usage

Yv

Two- trie structure

O Two- trie structure

= Nodes representing front and rear part of the prefix are
shared

= Originally by Aoe et al. (general)
= New version by Kijkanjanarat et al. for IP lookup

0o K-bit two trie

= Consists of two K-bit tries
Front trie
Rear trie

= Joining leaf nodes in the middle

= Both trie can be traversed in both direcrtions
Forward direction : from root to child
Backward direction: from child to root

YA

Two- trie structure

o Assume prefix X of length Y bits
= X is represented as <x(0).x(1)...x(N)>

= X(i), (i between 0 and N-1) is the K-bit part of
prefix X

= X(N) is a special symbol # , N = [Y/K]

m If Y is not a multiple of K, the prefix will be
expanded to a set of prefixes

Ya

Two- trie structure

o An example
= Triangles: Nodes of the rear trie
= Circles: Nodes of the front trie

= Rectangles: Separate nodes (Leaf nodes of the
front trie

Two- trie structure

Algorithm IPLookup (X))

1.

Let Z be the variable that stores the next hop of the longest matching
prefix. Initially Z is the default next hop.

. Start to do an IP lookup from the root node of the front trie by

matching each K-bit part of the destination address X of the packet
with prefixes in the two-trie structure.

. If there is a match, the traversal is moved to the child node at the next

level of the front trie.

. Whenever a new front node is arrived at, the algorithm first looks for

its child node corresponding to the symbol # (which must be the
separate node). If the node is found, it means that the two-trie
structure contains a longer matching prefix, so the varable Z is
updated with the next hop value of this prefix retrieved from the
separate node.

. When the separate node is reached, matching continues to the rear

trie by using a pointer at the separate node (shown as a dashed line
in Fig. 13.29). Matching on the rear trie is done in the backward
direction.

. The algorithm stops whenever

(a) a mismatch is detected somewhere in the structure (in such a case,
the current value of Z is returned as the next hop), or

(b) the traversal reaches the root node of the rear trie (no mismatch is
detected). This means that the destination address X of the packet
is actually stored as a prefix in the structure. The variable Z is
updated with the next hop value of the prefix stored at the separate
node we previously visited and returned as the output of the
function.

A

Two- trie structure

O Performance

= Memory accesses

Structure

Bits for Each Lewvel

Average Case

Two-trie
Two-trie
Standard trie

2, 8,8 and 8
1, 6.8 and 8
8, 8 and 8

3.6
L.6
2.1

= Memory usage

Structure

Bits for Each Level

Memory Requirements (Mbyte)

Two-trie
Two-trie

Standard trie

8,8, 8 and 3
16, 8, and 8
8, 8, and B

11.6
11.6
16.0

vy

