
IP Route Lookups

1

Introduction

 Growth of the Internet

 Network capacity: A scarce resource

 Good Service

 Large-bandwidth links -> Readily handled
(Fiber optic links)

 High router data throughput -> Readily
handled (Switching technology)

 High packet forwarding rates -> Key factor

2

IP Routing

 Packet forwarding tasks

 Packet header encapsulation and decapsulation

 Updating TTL field

 Checking for errors

 …

 IP route lookup -> Dominates the processing
time

3

IP Routing – Classful and Classless
 Classful

 3 Classes: A, B, and C

 2 Levels of hierarchy

 Wastes address space

 Classless Interdomain Routing (CIDR)

 Arbitrary aggregation

 Arbitrary length for host and network fields

 Routing entry: <prefix/length> pair

 <12.0.54.8/32>

 <12.0.54.0/24>

 <12.0.0.0/16>

 Efficient routing table size

 Needs to find the longest match

 Packet destination: 12.0.54.2

 Matches: <12.0.54.0/24>, <12.0.0.0/16>

 <12.0.54.0/24> is used

 Makes IP route lookup a bottleneck
4

Architecture of generic routers

 With forwarding engines

 Packet headers go to the forwarding
engines

 Forwarding engines determine the
output interface to send the packet

 With processing power on
interface

 Input interfaces determine the output
interface to send the packet

 Forwarding tables

 Forwarding engine and input
interfaces

 Need not be dynamic

 Optimized for fast lookups

 Network processor

 Dynamic and up-to-date
5

Switching

 Fabric

Forwarding Engine Interface

Forwarding Engine

Forwarding Engine

Interface

Interface

Network

Processor

Switching

 Fabric

Interface

Interface

Interface

Network

Processor

Interface

Interface

Interface

IP route lookup design

 Goals

 Minimize time (primary goal)

 Minimize the number of memory accesses

 Minimize the size of the data structure

 Minimize instructions needed

 Aligned data structures

6

Route lookup structure

 IP address space

 A binary tree with depth 32

 232 leaves

 <prefix/length> pair

 Prefix defines a path in the tree

 Length says how deep the path goes in the tree

 All IP addresses in the subtree are routed according that
entry

 Longest matching concept

 Subtrees of entries e1
 and e2 overlap

 e1 is hidden by e2 for
addresses in the range r

7

2
32

 leaves (IP Addressess)

depth 32

r

e1

e2

IP route lookup and caching

 Using caching techniques for IP route
lookup

 Relies on locality of destination address stream

 There is not enough locality for backbone
routers

 Not a good solution for current backbone
routers

8

Trie structure

 Represents prefixes
of different lengths

 1-bit trie

 Left link: 0

 Right link: 1

 Search

 Start from root, move to left or right if the current bit of
the address is 0 or 1 respectively

 If a node containing a prefix mark (*) is seen, store it
somewhere as the longest match up to now

 Addition

 Follow the path and create new nodes if needed and finally
mark the last node as a prefix

 Deletion

 Follow the path and delete the last node and its parents
until a marked node or a node with another child is seen 9

a

b

dc

gfe

h

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

0

0

0

0 0

0

0

0

1

1

1

11

1

Trie level compression

 1-bit trie: worst case of 32
memory accesses

 Multibit trie (n-bit trie)

 n bits is checked at each level

 2n children for each node

 Prefix expansion -> more
memory usage

10

1* (a) 10* (b)

11* (a)

10* (b)

000* (c) 0000* (c)

0001* (c)

110* (d) 1100* (d)

1101* (f)

1000* (e)

1101* (f)

1111* (g)

00001* (h) 000010* (h)

000011* (h)

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

b a

fe g d fcc

hh

00
10

11

00 01

1110

00 01 11 00 01

Trie path compression

 PATRICIA trie

 Remove nodes with one child without prefix

 Store the number of removed nodes (Skip
values)

 Only useful in sparse tries, not backbone
routing tables

11

c a

bh

gde

f

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

Skip=3

Skip=2

Skip=2 Skip=2

DIR-24-8 implementation

 Gupta et al.

 Two levels

 First memory bank: 24 bits of address

 Second memory bank: 8 bits of address

 Performance

 Two pipelined memory accesses per lookup

 DRAM delay
of 50ns => 20 mlps

 33 Mbytes of DRAM

 Drawbacks

 High memory usage

 Many memory places may need to change for an update
12

Degermark et al. scheme

 Degermark et al. scheme

 Large routing table in a small data structure

 Small enough to fit in cache

 Fast lookup in software

 Prefix tree needs to be complete

 Each node: 0 or 2 children

 Expanding the tree

 Three levels

 Level 1: depth 1-16

 Level 2: depth 15-24

 Level 3: depth 25-32

13

Degermark et al. scheme

 Level 1 of the tree

 A bit vector

 Representing a cut in depth 16

 If tree continues below the cut => bit=1 (root head)

 If a leaf is located in depth 16 or less

 A range is spanned by that leaf in depth 16

 The least significant bit of the range is set to 1 (genuine head)

 Other bits are set to zero

 For root head we store an index to NHP table

 For genuine head we store an index to a subtree in the
ext level

14

Degermark et al. scheme

 Search algorithm for level 1

 Some bit extractions, array references and additions

 7 bytes of accesses to the memory

 10 Kbytes of memory usage

 (A 2D array of 5.3 Kbytes is also used, but it is shared
among all levels)

 Level 2 and 3

 Some chunks indexed from the previous level

 Each chunk: Depth of 8 (Possible 256 heads)

 Sparse: 1-8 heads

 Dense: 9-64 heads

 Very dense: 65-256 heads

 Dense and very dense chunks are searched like level 1

 Sparse chunks are stored sorted and searched with at
most 7 memory accesses

15

Huang et al. scheme

 Huang et al. scheme

 Same as DIR-24-8, but

 Uses variable length offsets
to consider prefix distribution

 Compresses routing data

 Worst case of 3 memory accesses per lookup

 450-470 Kbytes memory usage

 Simplest case: Direct lookup

 Expand all prefixes to 32 bits

 1 memory access per lookup

 4 GBytes memory usage

16

Huang et al. scheme

 Indirect Lookup

 Break the address space to two levels

 Same idea as DIR-24-8

17

Huang et al. scheme

 Indirect lookup with variable length offsets

 Reduces NHA sizes

18

Huang et al. scheme

 NHA data compression

 Redundancy

 Compression

19

Multiway Search (Lampson et al.)

 Standard multiway search

 Useful for exact matching

 Needs modification for longest matching

 Basic idea

 Consider 1*, 101*, 10101* prefixes

 Pad them to become of same length

 Binary search incorrectly fails for these addresses

 101011, 101110, 111110

 Two problems

 Search may end up far away from the correct answer

 Multiple addresses with different matching prefixes
may end up in the same region

 20

Multiway Search (Lampson et al.)

 Considering prefixes as ranges

 Consider each prefix as a range

 Expand each prefix to start and end of the
range

 1* becomes 100000 and 111111

 Solves the second problem

21

Multiway Search (Lampson et al.)

 The first problem

 A linear search is needed to find the correct
match

22

Multiway Search (Lampson et al.)

 How to solve the first problem

 Precomputed pointers

 For each row:

 A pointer for when the binary search finishes with a
hit (= pointer)

 A pointer for when the binary search finishes with a
fail (> pointer)

23

Multiway Search (Lampson et al.)

 Table construction

 A push/pop algorithm to calculate pointers

 Prefix insertion and deletion

 Many pointers may become invalid

 High overhead

 Batching may help

24

Multiway Search (Lampson et al.)

 Partitioning the problem

 Inspect first Y bits of the address directly

 This points us to one of 2Y subtables

25

Multiway Search (Lampson et al.)

 Mٍultiway search

 k keys

 2k+1 pointers per node

 Logk+1 N comparisons (worst case)

 As large k as possible that fits in the CPU
cache line

 For Pentium Pro: k=5

26

Multiway search (Lampson et al.)

 Results

 For 30000 entries

 Considering 16 bits initial array

 Worst case subtable: 336 entries

 => Worst case of 4 memory accesses

 On Pentium Pro 200 Mhz

 490ns worst case search time per lookup

 130ns average time per lookup

 1.7MB memory usage

27

Two- trie structure

 Two- trie structure

 Nodes representing front and rear part of the prefix are
shared

 Originally by Aoe et al. (general)

 New version by Kijkanjanarat et al. for IP lookup

 K-bit two trie

 Consists of two K-bit tries

 Front trie

 Rear trie

 Joining leaf nodes in the middle

 Both trie can be traversed in both direcrtions

 Forward direction : from root to child

 Backward direction: from child to root

28

Two- trie structure

 Assume prefix X of length Y bits

 X is represented as <x(0).x(1)…x(N)>

 x(i), (i between 0 and N-1) is the K-bit part of
prefix X

 x(N) is a special symbol # , N = [Y/K]

 If Y is not a multiple of K, the prefix will be
expanded to a set of prefixes

29

Two- trie structure

 An example

 Triangles: Nodes of the rear trie

 Circles: Nodes of the front trie

 Rectangles: Separate nodes (Leaf nodes of the
front trie

30

Two- trie structure

31

Two- trie structure

 Performance

 Memory accesses

 Memory usage

32

