
IP Route Lookups

1

Introduction

 Growth of the Internet

 Network capacity: A scarce resource

 Good Service

 Large-bandwidth links -> Readily handled
(Fiber optic links)

 High router data throughput -> Readily
handled (Switching technology)

 High packet forwarding rates -> Key factor

2

IP Routing

 Packet forwarding tasks

 Packet header encapsulation and decapsulation

 Updating TTL field

 Checking for errors

 …

 IP route lookup -> Dominates the processing
time

3

IP Routing – Classful and Classless
 Classful

 3 Classes: A, B, and C

 2 Levels of hierarchy

 Wastes address space

 Classless Interdomain Routing (CIDR)

 Arbitrary aggregation

 Arbitrary length for host and network fields

 Routing entry: <prefix/length> pair

 <12.0.54.8/32>

 <12.0.54.0/24>

 <12.0.0.0/16>

 Efficient routing table size

 Needs to find the longest match

 Packet destination: 12.0.54.2

 Matches: <12.0.54.0/24>, <12.0.0.0/16>

 <12.0.54.0/24> is used

 Makes IP route lookup a bottleneck
4

Architecture of generic routers

 With forwarding engines

 Packet headers go to the forwarding
engines

 Forwarding engines determine the
output interface to send the packet

 With processing power on
interface

 Input interfaces determine the output
interface to send the packet

 Forwarding tables

 Forwarding engine and input
interfaces

 Need not be dynamic

 Optimized for fast lookups

 Network processor

 Dynamic and up-to-date
5

Switching

 Fabric

Forwarding Engine Interface

Forwarding Engine

Forwarding Engine

Interface

Interface

Network

Processor

Switching

 Fabric

Interface

Interface

Interface

Network

Processor

Interface

Interface

Interface

IP route lookup design

 Goals

 Minimize time (primary goal)

 Minimize the number of memory accesses

 Minimize the size of the data structure

 Minimize instructions needed

 Aligned data structures

6

Route lookup structure

 IP address space

 A binary tree with depth 32

 232 leaves

 <prefix/length> pair

 Prefix defines a path in the tree

 Length says how deep the path goes in the tree

 All IP addresses in the subtree are routed according that
entry

 Longest matching concept

 Subtrees of entries e1
 and e2 overlap

 e1 is hidden by e2 for
addresses in the range r

7

2
32

 leaves (IP Addressess)

depth 32

r

e1

e2

IP route lookup and caching

 Using caching techniques for IP route
lookup

 Relies on locality of destination address stream

 There is not enough locality for backbone
routers

 Not a good solution for current backbone
routers

8

Trie structure

 Represents prefixes
of different lengths

 1-bit trie

 Left link: 0

 Right link: 1

 Search

 Start from root, move to left or right if the current bit of
the address is 0 or 1 respectively

 If a node containing a prefix mark (*) is seen, store it
somewhere as the longest match up to now

 Addition

 Follow the path and create new nodes if needed and finally
mark the last node as a prefix

 Deletion

 Follow the path and delete the last node and its parents
until a marked node or a node with another child is seen 9

a

b

dc

gfe

h

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

0

0

0

0 0

0

0

0

1

1

1

11

1

Trie level compression

 1-bit trie: worst case of 32
memory accesses

 Multibit trie (n-bit trie)

 n bits is checked at each level

 2n children for each node

 Prefix expansion -> more
memory usage

10

1* (a) 10* (b)

11* (a)

10* (b)

000* (c) 0000* (c)

0001* (c)

110* (d) 1100* (d)

1101* (f)

1000* (e)

1101* (f)

1111* (g)

00001* (h) 000010* (h)

000011* (h)

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

b a

fe g d fcc

hh

00
10

11

00 01

1110

00 01 11 00 01

Trie path compression

 PATRICIA trie

 Remove nodes with one child without prefix

 Store the number of removed nodes (Skip
values)

 Only useful in sparse tries, not backbone
routing tables

11

c a

bh

gde

f

1* a

10* b

000* c

110* d

1000* e

1101* f

1111* g

00001* h

Skip=3

Skip=2

Skip=2 Skip=2

DIR-24-8 implementation

 Gupta et al.

 Two levels

 First memory bank: 24 bits of address

 Second memory bank: 8 bits of address

 Performance

 Two pipelined memory accesses per lookup

 DRAM delay
of 50ns => 20 mlps

 33 Mbytes of DRAM

 Drawbacks

 High memory usage

 Many memory places may need to change for an update
12

Degermark et al. scheme

 Degermark et al. scheme

 Large routing table in a small data structure

 Small enough to fit in cache

 Fast lookup in software

 Prefix tree needs to be complete

 Each node: 0 or 2 children

 Expanding the tree

 Three levels

 Level 1: depth 1-16

 Level 2: depth 15-24

 Level 3: depth 25-32

13

Degermark et al. scheme

 Level 1 of the tree

 A bit vector

 Representing a cut in depth 16

 If tree continues below the cut => bit=1 (root head)

 If a leaf is located in depth 16 or less

 A range is spanned by that leaf in depth 16

 The least significant bit of the range is set to 1 (genuine head)

 Other bits are set to zero

 For root head we store an index to NHP table

 For genuine head we store an index to a subtree in the
ext level

14

Degermark et al. scheme

 Search algorithm for level 1

 Some bit extractions, array references and additions

 7 bytes of accesses to the memory

 10 Kbytes of memory usage

 (A 2D array of 5.3 Kbytes is also used, but it is shared
among all levels)

 Level 2 and 3

 Some chunks indexed from the previous level

 Each chunk: Depth of 8 (Possible 256 heads)

 Sparse: 1-8 heads

 Dense: 9-64 heads

 Very dense: 65-256 heads

 Dense and very dense chunks are searched like level 1

 Sparse chunks are stored sorted and searched with at
most 7 memory accesses

15

Huang et al. scheme

 Huang et al. scheme

 Same as DIR-24-8, but

 Uses variable length offsets
to consider prefix distribution

 Compresses routing data

 Worst case of 3 memory accesses per lookup

 450-470 Kbytes memory usage

 Simplest case: Direct lookup

 Expand all prefixes to 32 bits

 1 memory access per lookup

 4 GBytes memory usage

16

Huang et al. scheme

 Indirect Lookup

 Break the address space to two levels

 Same idea as DIR-24-8

17

Huang et al. scheme

 Indirect lookup with variable length offsets

 Reduces NHA sizes

18

Huang et al. scheme

 NHA data compression

 Redundancy

 Compression

19

Multiway Search (Lampson et al.)

 Standard multiway search

 Useful for exact matching

 Needs modification for longest matching

 Basic idea

 Consider 1*, 101*, 10101* prefixes

 Pad them to become of same length

 Binary search incorrectly fails for these addresses

 101011, 101110, 111110

 Two problems

 Search may end up far away from the correct answer

 Multiple addresses with different matching prefixes
may end up in the same region

 20

Multiway Search (Lampson et al.)

 Considering prefixes as ranges

 Consider each prefix as a range

 Expand each prefix to start and end of the
range

 1* becomes 100000 and 111111

 Solves the second problem

21

Multiway Search (Lampson et al.)

 The first problem

 A linear search is needed to find the correct
match

22

Multiway Search (Lampson et al.)

 How to solve the first problem

 Precomputed pointers

 For each row:

 A pointer for when the binary search finishes with a
hit (= pointer)

 A pointer for when the binary search finishes with a
fail (> pointer)

23

Multiway Search (Lampson et al.)

 Table construction

 A push/pop algorithm to calculate pointers

 Prefix insertion and deletion

 Many pointers may become invalid

 High overhead

 Batching may help

24

Multiway Search (Lampson et al.)

 Partitioning the problem

 Inspect first Y bits of the address directly

 This points us to one of 2Y subtables

25

Multiway Search (Lampson et al.)

 Mٍultiway search

 k keys

 2k+1 pointers per node

 Logk+1 N comparisons (worst case)

 As large k as possible that fits in the CPU
cache line

 For Pentium Pro: k=5

26

Multiway search (Lampson et al.)

 Results

 For 30000 entries

 Considering 16 bits initial array

 Worst case subtable: 336 entries

 => Worst case of 4 memory accesses

 On Pentium Pro 200 Mhz

 490ns worst case search time per lookup

 130ns average time per lookup

 1.7MB memory usage

27

Two- trie structure

 Two- trie structure

 Nodes representing front and rear part of the prefix are
shared

 Originally by Aoe et al. (general)

 New version by Kijkanjanarat et al. for IP lookup

 K-bit two trie

 Consists of two K-bit tries

 Front trie

 Rear trie

 Joining leaf nodes in the middle

 Both trie can be traversed in both direcrtions

 Forward direction : from root to child

 Backward direction: from child to root

28

Two- trie structure

 Assume prefix X of length Y bits

 X is represented as <x(0).x(1)…x(N)>

 x(i), (i between 0 and N-1) is the K-bit part of
prefix X

 x(N) is a special symbol # , N = [Y/K]

 If Y is not a multiple of K, the prefix will be
expanded to a set of prefixes

29

Two- trie structure

 An example

 Triangles: Nodes of the rear trie

 Circles: Nodes of the front trie

 Rectangles: Separate nodes (Leaf nodes of the
front trie

30

Two- trie structure

31

Two- trie structure

 Performance

 Memory accesses

 Memory usage

32

