### HIGH PERFORMANCE SWITCHES AND ROUTERS Wiley H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh

### Knockout Switches Outlines

- Introduction
- Single Stage Knockout-Basic Architecture
- Knockout Concentration Principle
- Concentrator Architecture
- Channel grouping Principle
- Generalized Knockout Principle
- MOBAS Switch
- Fault Tolerant Knockout Switches
- Conclusion

### Knockout Switches Introduction-1

- Output Buffered Switches: The best delaythroughput performance.
- Problem of Output Buffered Switches:
  - Memory Speed Limitation
- Solution (Knockout Principle)
  - limiting the number of cells that can arrive at an output port in each time slot
  - Other cells are discarded
- **Q**:How Many?
- Tradeoff between "Cell Loss Ratio" and "Memory Bandwidth"

**Introduction-2** 

- the memory speed is no longer the bottleneck for the output-buffered switch
- No Commercial Products

Why?

### Single Stage Knockout-Basic Architecture



Knockout switch interconnection fabric

### **Knockout Switches-Bus Interface**



## **Operation of a Barrel Shifter-1**



## **Operation of a Barrel Shifter-2**



### **Knockout Concentration Principle**

$$P_k = \binom{N}{k} \left(\frac{\rho}{N}\right)^k \left(1 - \frac{\rho}{N}\right)^{N-k}, \qquad k = 0, 1, \dots, N.$$

$$\Pr[\text{cell loss}] = \frac{1}{\rho} \sum_{k=L+1}^{N} (k-L) {\binom{N}{k}} \cdot \left(\frac{\rho}{N}\right)^{k} \left(1 - \frac{\rho}{N}\right)^{N-k}$$

$$\Pr[\text{cell loss}] = \left(1 - \frac{L}{\rho}\right) \left(1 - \sum_{k=0}^{L} \frac{\rho^k e^{-\rho}}{k!}\right) + \frac{\rho^L e^{-\rho}}{L!} \qquad N \to \infty,$$

#### **Concentration Cell Loss Performance**



#### Knockout Switches Concentration Cell Loss Performance



### **Construction of the Concentrator**



Winner Loser

(a)

(b)

#### An eight-input to four-output concentrator



Outputs

# Construction of large Concentrator with Small Concentrators



### Knockout Switches channel grouping principle



# An asymmetric switch with line expansion ratio KM/N



### Knockout Switches Maximum Throughput

TABLE 6.1 Maximum Throughput with  $K \neq N$  Kept Constant While  $K, N \rightarrow \infty$ 

|                        | Maximum Throughput |                                           |                                           |                                           |                                  |                                  |                         |                         |                         |                |
|------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------|
| М                      | K/N =              | $\frac{1}{16}$                            | $\frac{1}{8}$                             | $\frac{1}{4}$                             | $\frac{1}{2}$                    | 1                                | 2                       | 4                       | 8                       | 16             |
| 1<br>2<br>4<br>8<br>16 |                    | 0.061<br>0.121<br>0.241<br>0.476<br>0.878 | 0.117<br>0.233<br>0.457<br>0.831<br>0.999 | 0.219<br>0.426<br>0.768<br>0.991<br>1.000 | 0.382<br>0.686<br>0.959<br>1.000 | 0.586<br>0.885<br>0.996<br>1.000 | 0.764<br>0.966<br>1.000 | 0.877<br>0.991<br>1.000 | 0.938<br>0.998<br>1.000 | 0.969<br>0.999 |

|      | Maximum Throughput |       |       |       |       |       |       |  |  |  |
|------|--------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| M    | KM/N =             | 1     | 2     | 4     | 8     | 16    | 32    |  |  |  |
| 1    |                    | 0.586 | 0.764 | 0.877 | 0.938 | 0.969 | 0.984 |  |  |  |
| 2    |                    | 0.686 | 0.885 | 0.966 | 0.991 | 0.998 | 0.999 |  |  |  |
| 4    |                    | 0.768 | 0.959 | 0.996 | 1.000 | 1.000 | 1.000 |  |  |  |
| 8    |                    | 0.831 | 0.991 | 1.000 |       |       |       |  |  |  |
| 16   |                    | 0.878 | 0.999 |       |       |       |       |  |  |  |
| 32   |                    | 0.912 | 1.000 |       |       |       |       |  |  |  |
| 64   |                    | 0.937 |       |       |       |       |       |  |  |  |
| 128  |                    | 0.955 |       |       |       |       |       |  |  |  |
| 256  |                    | 0.968 |       |       |       |       |       |  |  |  |
| 512  |                    | 0.978 |       |       |       |       |       |  |  |  |
| 1024 |                    | 0.984 |       |       |       |       |       |  |  |  |

TABLE 6.2 Maximum Throughput with KM / N Kept Constant While KM,  $N \rightarrow \infty$ 

### **Generalized Knockout Principle**



### **Generalized Knockout Principle**

$$\Pr[\text{cell loss}] = \frac{1}{M\rho} \sum_{k=LM+1}^{N} (k - LM) {\binom{N}{k}} {\left(\frac{M\rho}{N}\right)^{k}} \cdot \left(1 - \frac{M\rho}{N}\right)^{N-k}$$

$$\Pr[\text{cell loss}] = \left(1 - \frac{L}{\rho}\right) \left(1 - \sum_{k=0}^{LM} \frac{(M\rho)^k e^{-M\rho}}{k!}\right) + \frac{(M\rho)^{LM} e^{-M\rho}}{(LM)!}$$

$$\text{As } N \to \infty$$

#### Generalized knockout principle Operation



number of simultaneous cells accepted,  $L \times M$ 



### The architecture of a multicast output buffered ATM switch



# Replicating cells for a multicast connection in the MOBAS





OPC : Output Port Controller

### Knockout Switches Multicast Grouping Network



## Switching condition of the switch element SWE



### Knockout Switches Routing a multicast cell



### Knockout Switches Translation Tables-1

| (a) Unicast translation<br>table entry at IPC1   | Arrived VCI | A1 A2 |     | Р | New VCI |  |
|--------------------------------------------------|-------------|-------|-----|---|---------|--|
| (b) Multicast translation<br>table entry at IPC1 | Arrived VCI | MP1   |     | Р | BCN     |  |
| (c) Multicast translation<br>table entry at IPC2 | BCN         | MP2   |     |   |         |  |
| (d) Multicast translation<br>table entry at OPC  | BCN         | DR    | VCI | 1 | VCI 2   |  |

- VCI : Virtual channel identifier
- A1 : Output address of MGN1
- MP1 : Multicast pattern in MGN1
- P : Priority for cell contention

- BCN : Broadcast channel number
- A2 : Output address of MGN2
- MP2 : Multicast pattern in MGN2
- DR : Number of duplication requests

### Knockout Switches Translation Tables-2



I : Multicast indication bit, 0 : unicast, 1 : multicast

(b)



(a)

# Fault Model of Switching Elements-1

- Need to Reliability
- Redundancy Techniques:
  - Time Redundancy
  - Space Redundancy
- Fault Tolerant Topics
  - Fault Diagnosis
    - Fault Detection
    - Fault Location
  - System Reconfiguration

# Fault Model of Switching Elements-2

#### Fault Sources

In Control Logic Circuit (logic errors)
 Cross Stuck (Remains in Cross state)
 Toggle Stuck (Remains in Toggle state)

- In Data Link of SWE (link errors)
  - Vertical Stuck
  - Horizontal Stuck

### Knockout Switches Cross-Stuck (CS) Fault



# Toggle-Stuck (TS) Fault



### Knockout Switches Vertical/Horizontal-Stuck(VS/HS) Fault



Knockout Switches Fault Detection

- Using FD's (Fault detector)
- Test Pattern Generation by MPM's and AB's
- On Fault Diagnosis:
  - Keeping user packets
  - Doing Tests
  - System Reconfiguration
- Fast, So no interruption in Switch Functionality

**Cross-Stuck and Toggle-Stuck Fault Detection** 

- Toggle/Cross Fault Detection?
  - Monitoring FA's
    - If all 0 -> Fault
- Online Detection?
  - Toggle Stuck –possible!
  - Cross Stuck –Not possible!
- Vertial/Hor. Stuck Fault Detection?
  - Monitoring Switch module
    If all the same ->Fault

# Fault Location and Reconfiguration

- Fault localization after Detection
- System Reconfiguration after localization
- Using test cells
  - FileIds:
    - FA Field
    - New Priority field  $[\log_2 2L_1 M]$  bits in MGN1
    - Input source field

### **Toggle-Stuck and Cross-Stuck Cases**



### Knockout Switches Fault Location Test



### Fault Location of Cross Stuck



### **Reconfiguration of Vertical Stuck Fault**



### Knockout Switches Fault Location Test



### Knockout Switches Reconfiguration

