
INPUT BUFFERED

SWITCHES

HIGH PERFORMANCE

SWITCHES AND ROUTERS

Wiley

H. JONATHAN CHAO and BIN LIU

Instructor: Mansour Rousta Zadeh

INTRODUCTION

Input-buffered switches

• Two major problems
• Throughput limitation

• Because of head-of-line (HOL) blocking

• Need for faster switch fabric

• Need for more paths to output ports

• Arbitration
• Because of out port contentions

• Need for fast scheduling mechanisms (this chapter)

• Factors to be considered in scheduling algorithm design
• Throughput

• Delay

• Fairness

• Implementation cost

• Scalability

• Per-flow scheduling

SWITCH MODEL

A simple switch model

• Inputs and outputs have the same rate

• Switch fabric
• Has a higher rate

• This is for performance

• Output buffer may be needed as a result

• Is internally conflict-free

• Has a constant delay

HOL BLOCKING

Head-of-line (HOL) blocking

• A cell whose intended out port is free may be blocked
because another cell in front of it is already blocked

• When using FIFO policy

• Example
• A and B have the same destination port

• B is blocked in this time slot

• C has to be blocked until B is cleared ALTHOUGH ITS
DESTINED PORT IS FREE in this time slot

TRAFFIC MODELS

Bernoulli arrival process and random traffic

• Cells arrive at inputs slot-by-slot
• Cell arrival probability (offered load)

• Equal for all inputs
• Independent from other slots

• FIFO discipline
• Consider k cells with the same destination out port at HOL
• Only 1 cell is transferred
• k-1 cells have to wait until next slot
• Other cells behind those k-1 cells will be blocked too (HOL

blocking)

• Small N -> Markov model
• Large N -> Poisson process
• For N->∞, Throughput->0.586

TRAFFIC MODELS

On-off model and bursty traffic

• Each input
• Active period
• Idle period

• Geometrical distribution
• p: probability of being active
• q: probability of being idle

• Mean burst length

• Offered load

• Large N -> throughput=0.5..0.586 (depending on burstiness)

HOW TO IMPROVE

PERFORMANCE

Methods for improving performance

• Increasing internal capacity

• Multiline (input smoothing)

• Speedup

• Parallel switch

• Increasing scheduling efficiency

• Window-based lookahead selection

• VOQ-base matching

HOW TO IMPROVE

PERFORMANCE

Increasing internal capacity

• Multiline (input smoothing)
• b lines for each input
• Nb*Nb switch fabric
• High implementation cost
• Out-of-sequence problem

• Speedup
• Fabric is c times faster than ports
• Time slot is divided to c cycles
• Throughput for c=2

• Bursty traffic: 82.8% … 88.5%
• Random traffic: 100%

• Parallel switch
• k identical switch planes

• Individual input buffers
• Shared output buffers

• 100% throughput for k=2
• The same problems as multiline scheme

HOW TO IMPROVE ERFORMANCE

Increasing scheduling efficiency

• Window-based lookahead

• Relax FIFO restriction

• w cells in front of queue sequentially contend for access to outputs
(w=window size)

• Only one cell still can be selected at each time slot

• Maximum throughput as a function of N and w

• Significant improve from w=1(FIFO) to w=2,3,4

• A little improve thereafter

HOW TO IMPROVE

PERFORMANCE

Increasing scheduling efficiency

• VOQ-based matching

• Each input has a queue per output

• Virtual output queue (VOQ)

• VOQi,j stores cells arriving at input
port i and destined for output port j

• Matching methods

• Maximum matching: the
maximum number ofinputs
and outputs are matched

• Maximal matching: no more
matches can be made
without modifying the existing
matches

• Stable matching: see next
page

HOW TO IMPROVE

PERFORMANCE

Stable matching

• A priority list for each input and each output
• Input priority list: all the cells queued at the input

• Output priority list: all the cells destined for that output port

• A matching is stable for a waiting cell c if:
• c is part of matching

• A cell in front of c in input priority list is part of matching

• A cell in front of c in output priority list is part of matching

• (part of matching = will be transferred during this phase)

SCHEDULING ALGORITHMS

Scheduling algorithms

• Input buffer
• Parallel iterative matching (PIM)

• Iterative round robin matching (iRRM)

• Iterative round robin with SLIP (iSLIP)

• Dual round robin matching (DRRM)

• Greedy round robin

• Output buffer emulation
• Most-urgent cell first (MUCFA)

• Critical cell first (CCF)

• Last in highest priority (LIHP)

• Input-output buffer
• Lowest-output-occupancy cell first

SCHEDULING ALGORITHMS

Parallel iterative matching (PIM)

• Random selection

• Each iteration: 3 steps
• Request: unmatched inputs send their requests to outputs

• Grant: if an output receives more than one requests, selects one randomly

• Accept: if an input receives more than one grants, selects one randomly

• 75% match completion in each iteration on average

• Converges at O(logN) iterations

• Throughput under uniform traffic
• 63% for one iteration

• 100% for N iterations

• Implementation cost of high speed random function

SCHEDULING ALGORITHMS -

IRRM

Iterative round robin matching
(iRRM)

• Similar to PIM, but uses round robin
selection instead of random selection

• A pointer to the port having the highest
priority for each port

• Accept pointer ai

• Grant pointer gi

• Algorithm iteration:

• Inputs send their requests

• Each output i that receive multiple
request, grants the one that gi to grant
the request according to its round robin
schedule, and increments gi

• Each input i that receive multiple grants,
refer to ai to grant the request according
to its round robin schedule, and
increments ai

SCHEDULING ALGORITHMS –

ISLIP

Iterative round robin with SLIP (iSLIP)

• Similar to iRRM, but gi is incremented

only when the grant is accepted

• No starvation: matched pairs get the

lowest priority

SCHEDULING ALGORITHMS -

DRRM

Dual round robin matching (DRRM)

• Similar to iSLIP, but starts round robin at inputs

• Each input sends only one request

• Each iteration
• Select one of requests at each input

• Send selected requests to the outputs

• Select one of requests at each output

• Send grants to selected inputs

SCHEDULING ALGORITHMS

Dual round robin matching

(DRRM)

• Desynchronization effect

• A comparison

SCHEDULING ALGORITHMS -

RRGS

Round robin greedy scheduling (RRGS)

• A Bottleneck in iSLIP and DRRM:

• Scheduling must be completed within one time slot

• 64 bytes cells, 40 Gbits/S link -> 12.8 ns for computation!

• Pipelining can help

• RRGS Algorithm

• Nonpipelined version first:

SCHEDULING ALGORITHMS -

RRGS

Round robin greedy scheduling (RRGS)

• Pipelined version

Output-Queuing Emulation:

The major drawback of input queuing is that the

queuing delay between inputs and outputs is

variable, which makes delay control more difficult.

Question:

Can an input output-buffered switch with a certain

speedup behave identically to an output-queued

switch?

SCHEDULING ALGORITHMS

SCHEDULING ALGORITHMS -

MUCFA

Most urgent cell first algorithm (MUCFA)

• Output queuing emulation
• TL: Time to leave (not time to live!)
• TL gets the number of cells ahead of this cell when

entering
• Most urgent cell: the cell with the smallest TL
• The algorithm

• Outputs send requests for the most urgent cells to the
corresponding inputs

• If an input gets multiple requests, selects the most urgent
cell

• Outputs which lose contention, request for next most
urgent cell

• These steps are repeated until no more matching is
possible

SCHEDULING ALGORITHMS - MUCFA

An example

A

B

SCHEDULING ALGORITHMS –

PRIORITY LISTS

Priority list base category of scheduling algorithms

• Input queues: Not FIFO

• Push-in queue

• Insertion

• According to a predefined priority, the cell goes

somewhere in queue

• Order of cells is unchanged after insertion

• Removing

• According to a predefined priority (push-in arbitrary out or

PIAO)

• From head of queue (push-in first out or PIFO)

SCHEDULING ALGORITHMS –

PRIORITY LISTS

Some definitions

• Time to leave
• TL(c)

• The time slot in which cell c leaves the switch

• Output cushion
• OC(c)

• The number of cells waiting in output buffer at output port
of cell c, having lower TL than c

• Input thread
• IT(c)

• The number of cells ahead of cell c in its input priority list

• Slackness
• L(c) = OC(c) – IT(c)

SCHEDULING ALGORITHMS –

PRIORITY LISTS

Critical cell first (CCF)

• Input queues: PIFO

• Position of insertion:
• As far from the head

as possible so that the
slackness is positive

Last in, highest priority (LIHP)

• Position of insertion:
• In front of the queue

• IT(c) = 0

SCHEDULING ALGORITHMS –

LOOFA

Lowest output occupancy cell first algorithm
(LOOFA)

• 100% throughput

• Speedup of 2

• Bounded cell delay

• Two versions
• Greedy

• Best first

• Parameters associated with a cell c
• Output occupancy: OCC(c)

• The number of cells in output queue of destination port of c

• Timestamp: TS(c)
• Age of the cell c

SCHEDULING ALGORITHMS –

LOOFA
Greedy version of algorithm

• Initially, all inputs and outputs are unmatched

• Each unmatched input sends its request to the output with the
lowest occupancy

• If an output gets multiple requests, grants the smallest TS

• Repeat from step 2, until no more matching is possible

An example

SCHEDULING ALGORITHMS –

LOOFA

Best-first version of
algorithm

• Initially, all inputs and outputs are
unmatched

• Among unmatched outputs, the
one having the smallest
occupancy is selected. All inputs
having a cell for it, send their
request.

• The output, grants the
request having the smallest
timestamp

• Repeat from step 2, until no more
matching is possible,
or N iterations are
completed

