Basics of Packet Switching

HIGH PERFORMANCE SWITCHES AND ROUTERS

Wiley
H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh

- Introduction
- ATM networks
- ATM switch systems
- IP router systems
\square switch design criteria and performance requirements
- Basic switching concept
\square ATM switching architecture

Introduction

- Internet: Scalable and Distributed System
->Fast Growth in Size and Traffic
->Lead to Great Success
->Exponentially Traffic Volume
->Need to New Infrastructure
\square This Problem is solved by Optical Transmission (DWDM, OXC)
- But another Problem risen:

Slow Growth in Switch/Router Technologies
\square Need to high speed and large capacity switching systems to aggregate lower bit rates
\square Need to support QoS specially for Realtime services

- One solution is ATM Network
\square Another solution is MPLS
- We will not cover MPLS in this course

Sample High Speed Routers

-Cisco CRS-1
-up to $46 \mathrm{~Tb} / \mathrm{s}$ throughput
-Two rack types

- Line card rack
$=640 \mathrm{~Gb} / \mathrm{s}$ throughput -up to 16 line cards
rup to $40 \mathrm{~Gb} / \mathrm{s}$ each mup to 72 racks
םSwitch rack
-central switch stage -up to 8 racks
\square In-service scaling.

Basics of Packet Switching

Basics of ATM Network and Switching

Basics of Packet Switching

ATM Switch Structure

\square Each IPC and OPC pair is located in a single Line Card named LIC.

Basics of Packet Switching ATM Switch

Basics of Packet Switching

IPC Block Diagram

\square This is the structure of IPC block diagram from the network to the fabric:

Basics of Packet Switching

OPC Block Diagram

- This is the structure of OPC block diagram from the switch fabric to the network line:

Basics of Packet Switching

Routing in ATM Fabric

\square Self Routing $\underset{0}{\text { Input }}$

- Label Routing

Basics of Packet Switching Function of IP Routers

IP Router Functions are classified as:

- Datapath functions
\square Control Functions

Basics of Packet Switching
 IP Router Systems

■Low-End Routers

םMiddle-Size Routers

-High-End Routers

Basics of Packet Switching Low-End Routers

Basics of Packet Switching Middle-Size Routers

Basics of Packet Switching High-End Routers

Basics of Packet Switching

Design Criteria

-Several Design Criteria

- Small Delay for multimedia application
- Small CLP (Cell Loss Probability) in near 100\% throughput for loss sensitive Apps
- High speed and capacity for high performance routers
- Distributed Control and self routing for scalability

Performance Criteria

Bellcore Performance Criteria

- QoS Class 1
- Equal to ITU-T Class A
- For cell loss sensitive applications
- QoS Class 3
- Equal to ITU-T Class C
- For Low latency connection oriented application
- QoS Class 4
- Equal to ITU-T Class D
- For Low latency connection-less application

Performance Objective across BSS

Performance Parameter	CLP	QoS 1	QoS 3	QoS 4
Cell loss ratio	0	$<10^{-10}$	$<10^{-7}$	$<10^{-7}$
Cell loss ratio	1	$\mathrm{~N} / \mathrm{S}^{a}$	$\mathrm{~N} / \mathrm{S}$	N / S
Cell transfer delay (99th percentile)	$1 / 0$	$150 \mu \mathrm{~s}$	$150 \mu \mathrm{~s}$	$150 \mu \mathrm{~s}$
Cell delay variation $\left(10^{-10}\right.$ quantile)	$1 / 0$	$250 \mu \mathrm{~s}$	$\mathrm{~N} / \mathrm{S}$	N / S
Cell delay variation (10^{-7} quantile)	$1 / 0$	$\mathrm{~N} / \mathrm{S}$	$250 \mu \mathrm{~s}$	$250 \mu \mathrm{~s}$

${ }^{a} \mathrm{~N} / \mathrm{S}$ not specified.
${ }^{b}$ Includes nonqueuing related delays, excluding propagation. Does not include delays due to processing above ATM layer.

Distribution of cell transfer delay

Basics of Packet Switching

Switching Concepts:
\square Internal Link Blocking
\square Output Port Contention
\square Head-of-Line Blocking
\square Multicasting
\square Call Splitting

Basics of Packet Switching

Internal Link Blocking

Basics of Packet Switching Output Port Contention

Basics of Packet Switching Head of Line (HOL) Blocking

Basics of Packet Switching Call Splitting

Output					
Input	1	2	3	4	5
1	1	1	0	0	1
2	0	1	0	0	0
3	0	0	0	1	0
4	0	1	1	0	-
5	0	0	1	1	0

Transmission requets matrix
(1: copy request, 0 : no request)

X	X	0	0	X
0	1	0	0	0
0	0	0	X	0
0	1	1	0	0
0	0	1	1	0

(a) One-shot

X	1	0	0	1
0	X	0	0	0
0	0	0	X	0
0	1	X	0	0
0	0	1	1	0

(b) Strict-sense call splitting

X	1	0	0	X
0	X	0	0	0
0	0	0	X	0
0	1	X	0	0
0	0	1	1	0

(c) Wide-sense call splitting

Basics of Packet Switching

Classification of ATM switching

 architectures

Shared
Medium

Shared
Memory

Crossbar Fully Banyan Interconnected

Single Path

Augmented
Banyan
Multipath

Clos Multiplane Recirculation

Basics of Packet Switching 'Time Division Switching

-Shared-Medium Switch

■Shared-Memory Switch

Basics of Packet Switching Shared-Medium Switch

Time division bus or ring

AF: Address Filter

Basics of Packet Switching

Shared-Memory Switch

Mux: Multiplexer
Demux: Demultiplier

- Crossbar Switches
- Fully Interconnected Switches
- Banyan-Based Switches

Multiple-Path Switches

- Augmented Banyan Switches
- Clos Switches
- Multiplane Switches
- Recirculation Switches

Basics of Packet Switching

Space Division - Crossbar Switches (1)

Basics of Packet Switching

Space Division - Crossbar Switches (2)

Basics of Packet Switching

Space Division - Crossbar Switches (3)

Basics of Packet Switching
Space Division - Fully Interconnected Switches

Basics of Packet Switching

Space Division - Banyan-Based Switches

(c) Banyan network
$\square: 2 \times 2$ Switch Element (SE)

Basics of Packet Switching

Space Division - Multiple-Path Switches

(a) Augmented Banyan

(c) Multiplane

(b) 3-stage Clos

(d) Recirculation

Basics of Packet Switching

Space Division - Augmented Banyan Switches

Basics of Packet Switching

Space Division - Three-Stage Clos Switches

Basics of Packet Switching

Space Division - Clos Switches (1)

Basics of Packet Switching

Space Division - Clos Switches (2)

$$
N_{x}=2 N m+m\left(\frac{N}{n}\right)^{2} .
$$

Substituting $m=2 n-1$ into N_{x}, we obtain

$$
\begin{aligned}
& \quad N_{x}=2 N(2 n-1)+(2 n-1)\left(\frac{N}{n}\right)^{2} \\
& N_{x} \simeq 2 N(2 n)+2 n\left(\frac{N}{n}\right)^{2}=4 N n+2\left(\frac{N^{2}}{n}\right) \\
& n \approx(N / 2)^{\frac{1}{2}} \\
& N_{x}=4 \sqrt{2} N^{\frac{3}{2}}=O\left(N^{\frac{3}{2}}\right)
\end{aligned}
$$

Basics of Packet Switching
Space Division - Multiplane Switches

Basics of Packet Switching
Space Division -Recirculation Switches

- Internally Buffered Switches
- Recirculation Buffered Switches
- Crosspoint-Buffered Switches
\square Input-Buffered Switches
- Output-Buffered Switches
\square Shared-Buffer Switches
- Multistage Shared-Buffer Switches
- Input- and Output-Buffered Switches
\square Virtual-Output-Queueing Switches

Basics of Packet Switching

Internally Buffered Switches

(a) Internal Buffered

Internally Buffered Switches

- Advantages:
- Low cell loss rate
- Easily scalable
- Disadvantages:
- Low throughput
- High transfer delay
- To meet QoS requirements, some scheduling and buffer management schemes need to be installed at the internal SEs

Basics of Packet Switching

Recirculation Buffered Switches

(b) Recirculation Buffered

Basics of Packet Switching

Crosspoint-Buffered switches

(c) Crosspoint Buffered

Basics of Packet Switching Input-Buffered Switches

(d) Input Buffered

Input-Buffered Switches

- HOL blocking problem:

- The throughput limitation is 58.6% for uniform traffic.
\square By using Windowing technique, the throughput will be increased. For instance, by increasing the window size to two, the maximum throughput is increased to 70\%.

Basics of Packet Switching

Output Buffered Switches

(e) Output Buffered

Basics of Packet Switching

Multistage Shared-Buffered switches

(g) Multistage Shared Buffer

Basics of Packet Switching

Input- and output-Buffered Switches

(h) Input and Output Buffered

Basics of Packet Switching Virtual-Output-Queuing Switches

(i) Virtual Output Queueing

Basics of Packet Switching

Performance of Basic Switches

- Input-buffered switches,
- Output-buffered switches,
- Completely shared-buffer switches,

Input-buffered switches

- The Maximum throughput achievable - using input queuing with FIFO Buffers

\mathbf{N}	Throughput
1	1.0000
2	0.7500
3	0.6825
4	0.6553
5	0.6399
6	0.6302
7	0.6234
8	0.6184
∞	0.5858

Basics of Packet Switching

Input-buffered switches

- The main waiting time for input queuing with FIFO buffers the limiting case for $N=\infty$

Output-buffered switches

- The cell loss probability for output queuing as a function of the buffer size b and the switch size N, for offered loads $p=0.8$

Basics of Packet Switching

Output-buffered switches

- The cell loss probability for output queuing as a function of the buffer size b and the switch size N, for offered loads $p=0.9$

Basics of Packet Switching

Output-buffered switches

The cell loss probability for output queuing as a function of the buffer size b and offered loads varying from $p=0.70$ to $p=0.95$, for the limiting case of $\mathrm{N} \rightarrow \infty$

Basics of Packet Switching

Output-buffered switches

The mean waiting time for output queuing as a function of the offered load p, for $\mathrm{N} \rightarrow \infty$ and output FIFO sizes varying from $b=1$ to ∞

Completely Shared-buffer switches

- The cell loss probability for completely shared buffering as a function of the buffer size per output, b, and the switch size N, for offered load $\mathrm{p}=0.8$

Completely Shared-buffer switches

- The cell loss probability for completely shared buffering as a function of the buffer size per output, b, and the switch size N, for offered load $\mathrm{p}=0.9$

Conclusion

\square We briefly described major classes of packet switches.
\square It is clear that there is no "the best" switch for all situations and applications
\square All switches have their own Pros and Cons

- More detail of these switches will be explained in the other sides

