HIGH PERFORMANCE SWITCHES AND ROUTERS Wiley H. JONATHAN CHAO and BIN LIU Instructor: Mansour Rousta Zadeh

Basics of Packet Switching Outlines

- Introduction
- ATM networks
- ATM switch systems
- IP router systems
- switch design criteria and performance requirements
- Basic switching concept
- ATM switching architecture

Basics of Packet Switching Introduction

Internet: Scalable and Distributed System

- ->Fast Growth in Size and Traffic
- ->Lead to Great Success
- ->Exponentially Traffic Volume
- ->Need to New Infrastructure
- This Problem is solved by Optical Transmission (DWDM, OXC)
- But another Problem risen: Slow Growth in Switch/Router Technologies

Basics of Packet Switching Switching

- Need to high speed and large capacity switching systems to aggregate lower bit rates
- Need to support QoS specially for Realtime services
- One solution is ATM Network
- Another solution is MPLS
- We will not cover MPLS in this course

Sample High Speed Routers

Basics of Packet Switching Sample High Capacity Router

Cisco CRS-1 ■up to 46 Tb/s throughput Two rack types Line card rack 640 Gb/s throughput up to 16 line cards □ up to 40 Gb/s each up to 72 racks Switch rack central switch stage up to 8 racks In-service scaling.

Basics of Packet Switching Basics of ATM Network and Switching

Basics of Packet Switching ATM Switch Structure

Each IPC and OPC pair is located in a single Line Card named LIC.

Basics of Packet Switching ATM Switch

Basics of Packet Switching IPC Block Diagram

This is the structure of IPC block diagram from the network to the fabric:

Basics of Packet Switching OPC Block Diagram

This is the structure of OPC block diagram from the switch fabric to the network line:

Basics of Packet Switching Routing in ATM Fabric

Label Routing

Basics of Packet Switching Function of IP Routers

IP Router Functions are classified as:

Datapath functions

Control Functions

Basics of Packet Switching IP Router Systems

Low-End Routers Middle-Size Routers

High-End Routers

Basics of Packet Switching Low-End Routers

Basics of Packet Switching Middle-Size Routers

Basics of Packet Switching High-End Routers

Design Criteria

Several Design Criteria

- Small Delay for multimedia application
- Small CLP (Cell Loss Probability) in near 100% throughput for loss sensitive Apps
- High speed and capacity for high performance routers
- Distributed Control and self routing for scalability

Performance Criteria

Bellcore Performance Criteria

QoS Class 1

- Equal to ITU-T Class A
- For cell loss sensitive applications

QoS Class 3

- Equal to ITU-T Class C
- For Low latency connection oriented application

QoS Class 4

- Equal to ITU-T Class D
- For Low latency connection-less application

Performance Objective across BSS

Performance Parameter	CLP	QoS 1	QoS 3	QoS 4
Cell loss ratio	0	$< 10^{-10}$	$< 10^{-7}$	$< 10^{-7}$
Cell loss ratio	1	N/S^{a}	N/S	N/S
Cell transfer delay (99th percentile) ^b	1/0	$150 \ \mu s$	150 μs	$150 \ \mu s$
Cell delay variation (10 ⁻¹⁰ quantile)	1/0	$250 \ \mu s$	N/S	N/S
Cell delay variation (10 ⁻⁷ quantile)	1/0	N/S	250 µs	250 µs

"N/S not specified.

^bIncludes nonqueuing related delays, excluding propagation. Does not include delays due to processing above ATM layer.

Distribution of cell transfer delay

Basics of Packet Switching

Switching Concepts:

- Internal Link Blocking
- Output Port Contention
- Head-of-Line Blocking
- Multicasting
- Call Splitting

Basics of Packet Switching Internal Link Blocking

Basics of Packet Switching Output Port Contention

Basics of Packet Switching Head of Line (HOL) Blocking

Basics of Packet Switching Call Splitting

Output									
Input	1	2	3	4	5				
1	1	1	0	0	1				
2	0	1	0	0	0				
3	0	0	0	1	0				
4	0	1	1	0	0				
5	0	0	1	1	0				

Transmission requets matrix

(1: copy request, 0: no request)

(a)	One	e-sho	ot		(b) St	rict-	sense	e cal	ll spl	litting	(c) W	/ide	sen	se ca	ull splitting
0	0	1	1	0		0	0	1	1	0		0	0	1	1	0
0	1	1	0	0		0	1	Х	0	0		0	1	Х	0	0
0	0	0	Х	0		0	0	0	Х	0		0	0	0	Х	0
0	1	0	0	0		0	Х	0	0	0		0	Х	0	0	0
Х	Х	0	0	х		Х	1	0	0	1		Х	1	0	0	Х

(X: accepted request, 1: rejected request)

Classification of ATM switching

architectures

Basics of Packet Switching Time Division Switching

Shared-Medium Switch

Shared-Memory Switch

Basics of Packet Switching Shared-Medium Switch

Basics of Packet Switching Shared-Memory Switch

Mux: Multiplexer

Demux : Demultiplier

Space division Switching

Single-Path Switches

- Crossbar Switches
- Fully Interconnected Switches
- Banyan-Based Switches

Multiple-Path Switches

- Augmented Banyan Switches
- Clos Switches
- Multiplane Switches
- Recirculation Switches

Space Division - Crossbar Switches (1)

Space Division - Crossbar Switches (2)

Space Division - Crossbar Switches (3)

Space Division - Fully Interconnected

Switches

Space Division - Banyan-Based Switches

(a) Delta network

(b) Omega network

(c) Banyan network

 $: 2 \times 2$ Switch Element (SE)

Space Division - Multiple-Path Switches

(a) Augmented Banyan

(c) Multiplane

(b) 3-stage Clos

(d) Recirculation

Space Division - Augmented Banyan Switches

Basics of Packet Switching Space Division - Three-Stage Clos Switches

Basics of Packet Switching Space Division - Clos Switches (1)

Space Division - Clos Switches (2)

$$N_x = 2Nm + m\left(\frac{N}{n}\right)^2.$$

Substituting m = 2n - 1 into N_x , we obtain

$$N_{x} = 2N(2n-1) + (2n-1)\left(\frac{N}{n}\right)^{2}.$$

$$N_{x} \approx 2N(2n) + 2n\left(\frac{N}{n}\right)^{2} = 4Nn + 2\left(\frac{N^{2}}{n}\right)$$

$$n \approx (N/2)^{\frac{1}{2}}$$

$$N_{x} = 4\sqrt{2}N^{\frac{3}{2}} = O(N^{\frac{3}{2}})$$

Basics of Packet Switching Space Division - Multiplane Switches

Space Division -Recirculation Switches

Buffering Strategies

- Internally Buffered Switches
- Recirculation Buffered Switches
- Crosspoint-Buffered Switches
- Input-Buffered Switches
- Output-Buffered Switches
- Shared-Buffer Switches
- Multistage Shared-Buffer Switches
- Input- and Output-Buffered Switches
- Virtual-Output-Queueing Switches

Basics of Packet Switching Internally Buffered Switches

(a) Internal Buffered

Internally Buffered Switches

Advantages:

- Low cell loss rate
- Easily scalable

Disadvantages:

- Low throughput
- High transfer delay
- To meet QoS requirements, some scheduling and buffer management schemes need to be installed at the internal SEs

Recirculation Buffered Switches

(b) Recirculation Buffered

Basics of Packet Switching Crosspoint-Buffered switches

(c) Crosspoint Buffered

Basics of Packet Switching Input-Buffered Switches

(d) Input Buffered

Input-Buffered Switches

HOL blocking problem:

The throughput limitation is 58.6% for uniform traffic.

By using <u>Windowing</u> technique, the throughput will be increased. For instance, by increasing the window size to two, the maximum throughput is increased to 70%.

Basics of Packet Switching Output Buffered Switches

(e) Output Buffered

Multistage Shared-Buffered switches

(g) Multistage Shared Buffer

Input- and output-Buffered Switches

(h) Input and Output Buffered

Virtual-Output-Queuing Switches

(i) Virtual Output Queueing

Performance of Basic Switches

- Input-buffered switches,
- Output-buffered switches,
- Completely shared-buffer switches,

Basics of Packet Switching Input-buffered switches

The Maximum throughput achievable
 using input queuing with FIFO Buffers

N	Throughput
1	1.0000
2	0.7500
3	0.6825
4	0.6553
5	0.6399
6	0.6302
7	0.6234
8	0.6184
∞	0.5858

Basics of Packet Switching Input-buffered switches

D The main waiting time for input queuing with FIFO buffers the limiting case for $N = \infty$

Output-buffered switches

The cell loss probability for output queuing as a function of the buffer size b and the switch size N, for offered loads p=0.8

Output-buffered switches

The cell loss probability for output queuing as a function of the buffer size b and the switch size N, for offered loads p=0.9

Output-buffered switches

The cell loss probability for output queuing as a function of the buffer size b and offered loads varying from p=0.70 to p=0.95, for the limiting case of N $\rightarrow \infty$

Output-buffered switches

The mean waiting time for output queuing as a function of the offered load p, for N $\rightarrow \infty$ and output FIFO sizes varying from b=1 to ∞

Completely Shared-buffer switches

The cell loss probability for completely shared buffering as a function of the buffer size per output, b, and the switch size N, for offered load

Completely Shared-buffer switches

The cell loss probability for completely shared buffering as a function of the buffer size per output, b, and the switch size N, for offered load p=0.9

Basics of Packet Switching Conclusion

- We briefly described major classes of packet switches.
- It is clear that there is no "the best" switch for all situations and applications
- All switches have their own Pros and Cons
- More detail of these switches will be explained in the other sides