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CHAPTER 8

BANYAN-BASED SWITCHES

The very early theoretical work on multistage interconnection networks (MIN) was done
in the context of circuit-switched telephone networks [1, 2]. The aim was to design a
nonblocking multistage switch with a number of crosspoints less than a single-stage crossbar
switch. After many such networks were studied and introduced for interconnecting multiple
processors and memories in parallel computer systems, several types of them such as banyan
and shuffle-exchange networks were proposed [3–5] as a switching fabric because several
cells could be routed in parallel and the switching function could be implemented regularly
in hardware.

In this chapter, we describe the banyan-family of switches, which have attracted many
researchers for more than two decades now to build interconnection networks. Section 8.1
classifies banyan-family switch architectures into different categories based on their nature
and property. Section 8.2 describes Batcher-sorting network switch architecture. Section 8.3
introduces output-contention resolution algorithms in banyan-family switches. Section 8.4
describes the Sunshine switch which extends the Batcher-banyan switching architecture.
Section 8.5 describes some work on deflection routing over banyan-family networks.
Section 8.6 introduces a self-route copy network where the nonblocking property of the
banyan network is generalized to support multicasting.

8.1 BANYAN NETWORKS

The banyan class of interconnection networks was originally defined by Goke and
Lipovski [6]. It has the property that there is exactly one path from any input to any output.
Figure 8.1 shows four networks belonging to this class: the shuffle-exchange network (also
called the omega network), the reverse shuffle-exchange network, the banyan network, and
the baseline network.
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Figure 8.1 Four different banyan networks: (a) shuffle-exchange (omega) network; (b) reverse
shuffle-exchange network; (c) banyan network; (d) baseline network. We can see that (a) and (c) are
isomorphic by interchanging two shaded nodes in the figures.

Figure 8.2 8 × 8 banyan network.

The common principal properties of these networks are: (1) they consist of n = log2 N
stages and N/2 nodes per stage;1 (2) they have the self-routing property such that the unique
n-bit destination address can be used to route a cell from any input to any output, each bit
for a stage; and (3) their regularity and interconnection pattern are very attractive for VLSI
implementation. Figure 8.2 shows a routing example in an 8 × 8 banyan network where
the bold lines indicate the routing paths. On the right-hand side, the address of each output
destination is labeled as a string of n bits, b1 · · · bn. A cell’s destination address is encoded

1A regular N × N network can also be constructed from identical b × b switching nodes in k stages where N = b k .
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Figure 8.3 Internal blocking in an 8 × 8 banyan network.

into the header of the cell. In the first stage, the most significant bit b1 is examined. If it
is a 0, the cell will be forwarded to the upper outgoing link; if it is a 1, the cell will be
forwarded to the lower outgoing link. In the next stage, the next most significant bit b2 will
be examined and the routing is performed in the same manner.

The internal blocking refers to the case where a cell is lost due to the contention on a link
inside the network. Figure 8.3 shows an example of internal blocking in an 8 × 8 banyan
network. However, the banyan network will be internally nonblocking if both conditions
below are satisfied:

• There is no idle input between any two active inputs;
• Output addresses of the cells are in either an ascending order or a descending order.

Figure 8.4 (a) Example showing the banyan network is nonblocking for sorted inputs. (b) Non-
blocking sort-banyan network.
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See Figure 8.4. Consider the banyan network to be preceded by a network that con-
centrates the cells and sorts the cells according to their output destinations. The overall
sort-banyan network will be internally nonblocking.

8.2 BATCHER-SORTING NETWORK

A sorting network is formed by a series of merge networks of different sizes. Figure 8.5a
shows an 8 × 8 Batcher-sorting network [7] consisting of merge networks of three different
sizes. A merge network (see Figure 8.5b) is built by 2 × 2 sorting elements in stages, and
the pattern of exchange connections between each pair of adjacent stages is the same as in

Figure 8.5 Basic structure of a Batcher-sorting network. (a) Batcher-sorting network; (b)
Corresponding merge networks.
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a banyan network. We can observe that, if the order of the destinations of the first half input
cells is ascending and that of the second half is descending, then the merge network will sort
the cells into an ascending list at the outputs. An 8 × 8 sorting network will be formed if an
8 × 8 merge network is preceded by two 4 × 4 merge networks and four 2 × 2 merge (sort-
ing) elements.A completely random list of eight input cells will be first sorted into four sorted
lists of two cells, then two sorted lists of four cells, and finally a sorted list of eight cells.

A N × N merge network consists of log2 N stages and N log2 N/2 elements. A sorting
network has 1 + 2 + · · · + log2 N = log2 N(log2 N + 1)/2 stages and N log2 N (log2 N +
1)/4 elements. Figure 8.6 shows a 64 × 64 Batcher-banyan switch network, where the last
six stages of switch elements belong to the banyan network.

8.3 OUTPUT CONTENTION RESOLUTION ALGORITHMS

8.3.1 Three-Phase Implementation

The following three-phase algorithm is a solution for output contention resolution in a
Batcher-banyan switch (see Figure 8.7).

In the first (arbitration) phase of the algorithm, each input port i sends a short request
only, consisting of a source-destination pair, to the sorting network where the requests
are sorted in nondecreasing order according to the destination address. In other words,
conflicting requests are sorted at adjacent positions, and a request wins the contention only
if its destination is different from the one above it in the sorted list.

As the input ports do not know the result of the arbitration, the requests that won the
arbitration must send an acknowledgment to the input ports via an interconnection net-
work in the second phase (the so-called acknowledgment phase). The feedback network in
Figure 8.7b consists of N fixed connections, each from an output of the Batcher network to
the corresponding input of the Batcher network. Each acknowledgment carries the source
that has won the contention back to an input of the Batcher network. These acknowledg-
ments (sources) are routed through the entire Batcher-banyan network at distinct outputs
according to the source address. When these acknowledgments are feedbacked to the inputs
through an identical fixed network, each input port knows if it has won the contention. The
input ports that finally receive an acknowledgment are guaranteed conflict-free output.

These input ports then transmit the full cell in the third and final phase (see Figure 8.7c)
through the same Batcher-banyan network. Input ports that fail to receive an acknowledg-
ment retain the cell in a buffer for the retry in the next time slot when the three-phase cycle
is repeated.

8.3.2 Ring Reservation

A Batcher-banyan cell switch design with ring reservation is shown in Figure 8.8 [8]. The
switch comprises the Batcher-banyan switch fabric, several switch interfaces, and a ring
head-end (RHE) and timing generator.

A switch interface supports ring reservation and provides input cells buffering,
synchronization of cells sent to the switch fabric, and output cells buffering. Cells entering
the switch are buffered in a FIFO until they can participate in the reservation procedure.
When an output is successfully reserved, the cell is delivered to the switch fabric at the
beginning of the next cell cycle, and the next queued cell can begin to participate in the
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Figure 8.6 64 × 64 Batcher-banyan switch network.
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Figure 8.7 Three-phase algorithm. (a) Phase I: send and resolve request; (b) Phase II: acknowledge
winning ports; (c) Phase III: send with data.

reservations. When the cell emerges from the output of the switch fabric, it is buffered in
the interface before being transmitted to its destination.

The RHE provides two switch synchronization signals: bit clock and cell cycle start;
and three ring reservation signals: ring clock, ring data, and the ring sync. The ring data
is a series of output reservation bits, and the ring sync signal indicates the position of the
first output port in the ring data series. These two signals are circulated through the RHE
and switch interfaces, one bit at a time, during the reservation process. Ring reservation is
performed at the beginning of each cell cycle after every ring interface has the header of the
oldest cell copies. The ring data in the RHE and each ring interface is cleared (idle) at every
cell cycle start. The ring data series then begins to circulate through the interface bit-by-bit.
Each interface maintains a port counter that is incremented in every ring data bit time. The
port counter is compared to the destination of the oldest cell in every bit time indicating if
the cell is destined for the output in the next bit time. During each ring data bit time, each
switch interface examines both the ring sync and the ring data bit. If the ring sync signal is
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Figure 8.8 Batcher-banyan switch with ring reservation.

true, which means the next ring data bit corresponds to the first output, then the port counter
is reset in the next bit time. If the destination of the cell matches with the port counter and
the ring data bit is idle, the switch interface writes ‘busy’ on the ring to show that the output
has been occupied in the next switch cycle. If the ring data bit is already BUSY, or if the port
counter does not match the destination of the oldest cell, the ring data bit is left unchanged.
Since each interface makes no more than one reservation per switch cycle, no collisions
can take place in the switch fabric. While the ring reservation is being performed, the cells
reserved in the previous switch cycle are transmitted to the switch fabric.

As shown in Fig. 8.9, at the first time slot, the output port addresses of cells from input
ports 1 and 5 are matched, some checks are used to indicate that the cells can be sent to

Figure 8.9 Implementation of the ring reservation scheme.
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these output ports. The token bits x1 and x5 are set to one to indicate that output ports 1 and
5 are already reserved. All the token bits are shifted up one bit and the counter values are
also modulo-increased by one for the second time slot. There are no matches found at the
second and the third time slots. At the fourth time slot, the output port addresses of cells
from input ports 0 and 2 are matched. Since output port 5 is already reserved for the cell in
the previous time slot, which is indicated by the value of the token bit x2, the cell at input
port 2 cannot be sent. Similarly, for the fifth and the sixth time slots, cells at input ports
3 and 4 cannot be sent to output ports 1 and 3, respectively, since those output ports are
already reserved in the previous time slots. At the end, cells from the input ports that are
checked are the ones winning the contention.

In this example, since there are six input ports, the arbitration cycle can be completed
within six time slots. This scheme uses the serial mechanism and, in general, the arbitration
cycle can be done within the N-bit time slot, where N is the number of input/output ports
of the switch. This will become the bottleneck when the number of ports of the switch is
large. However, by arbitrarily setting the appropriate values for the counters prior to the
arbitration, this scheme provides fairness among the input ports. Another advantage of this
scheme is that it can be employed at the input of any type of switch fabric.

8.4 THE SUNSHINE SWITCH

Sunshine switch [9] uses the combination of a Batcher-sorting network and parallel banyan
routing networks to provide more than one path to each destination. Figure 8.10 shows
a block diagram of the architecture. The k parallel banyan routing networks provide k
independent paths to each output. If more than k cells request a particular output during
a time slot, then some excess cells are overflowed into a shared recirculating queue and
then resubmitted to the switch at dedicated input ports. The recirculating queue consists of
T parallel loops and T dedicated inputs to the Batcher-sorting network. Each recirculating
loop can hold one cell. A delay block is put within the loops to align recirculated cells
with those new arrivals from the input port controllers (IPCs) in the next time slot. During
each time slot, the Batcher network sorts newly arrived and recirculated cells in the order
of destination address and priority. This enables the trap network to resolve output port
contention by selecting the k highest priority cells for each destination address. Since there
are k parallel banyan networks, each output can accept k cells in a time slot. When there are
more than k cells destined for an output, the excess will enter the recirculating queue. The
concentrator and the selector will direct the excess cells to the recirculating loops, while
those cells selected for routing will be forwarded to the banyan networks.

Figure 8.10 Block diagram of the Sunshine switch.
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Each cell is inserted with a control header at the input port controller. The header format
is shown in Figure 8.11. It contains two control fields: a routing field and a priority field,
both are ordered starting with the most significant bit. In the routing field, the first bit is
a cell activity bit to indicate if the cell contains valid information (A = 1), or the cell is
empty (A = 0). Then the destination address (DA) field identifying the desired output port
follows. The priority field consists of the quality of service (QoS) indicator and the internal
switch priority (SP). The QoS field distinguishes cells from higher priority services such as
circuit emulation, from lower priority services such as connectionless service, and ensures
higher priority cells to be routed before lower priority cells when conflicts arise. The SP
field is used internally by the switch to indicate the number of time slots that a cell has
been delayed, and gives higher priority to recirculate cells. This guarantees that cells from
a given source will be routed in sequence.

When the cells are sorted, they are arranged in ascending order of destination address.
The priority field, where a higher numerical value represents a higher priority level, appears
as an extension of the routing field. This causes cells destined for the same output to be
arranged in the descending order of priority. In the trap network, the address of every cell
is compared with that of the cell k positions above. If a cell has the same address as the cell
k positions above, which indicates that there are at least k cells with higher priority, then
the cell is marked to be recirculated, and its routing field is interchanged with the priority
field because the priority field is more concerned with the following concentration sorting
network than the recirculation loss. Otherwise, the cell is one of the k (or less) highest
priority cells for the address, and is set to be routed.

In the Batcher concentration network, there are two groups of cells, one group of cells to
be routed and the other to be recirculated, each is sorted into a contiguous list, respectively.
Then the group of cells to be routed forms a list in ascending order of the destination
address, to avoid subsequent internal blocking in the banyan networks. The group of cells
to be recirculated is sorted into a separate contiguous list according to the priority. If the
recirculating queue overflows, the cells with lower priorities are more likely to be dropped
than those with higher priorities.

Cells are then directed to the selector that differentiates two groups of cells towards
k banyan networks and to T recirculators, respectively. Cells that enter the recirculators
will have their routing and priority fields interchanged back into the original format. Their
priority, SP, is incremented as the cell has been recirculated.

The outputs of the selectors are spread among the k banyan networks by connecting
every kth output to the same banyan network. This ensures every two cells destined for
the same output are separated into different banyan networks. The cells in each banyan
network still constitute a contiguous list destined for distinct outputs, which satisfies the

Figure 8.11 Header format.
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nonblocking condition in a banyan network. Every cell then reaches the desired output of
a banyan network, and all corresponding outputs are grouped together to an output queue
in the output port controller (OPC).

8.5 DEFLECTION ROUTING

8.5.1 Tandem Banyan Switch

Figure 8.12 shows the tandem banyan switching fabric (TBSF) [10]. It consists of multiple
banyan networks in series. While two cells contend at any node in a banyan network, one
of them will just be deflected to the wrong output of the node and finally arrive at an
incorrect destination of the banyan network. The deflected cell is then forwarded to the next
banyan network. This process continues again and again until the cell reaches the desired
output or it gets out of the last banyan network at an undesired output and is regarded as
lost. Each output of every banyan network is connected to the corresponding output buffer.
A cell is marked misrouted when it gets deflected in a banyan network to distinguish from
those properly routed cells and to avoid affecting their routing at later stages within the
network. At outputs of each banyan network, the cells that have reached their respective
destinations are extracted from the fabric and placed in output port buffers. Note that the
load of successive banyan networks decreases and so does the likelihood of conflicts. With a
sufficiently large number of banyan networks, it is possible to reduce the cell loss to desired
levels. Numerical results show that each additional banyan network improves the cell loss
probability by one order of magnitude.

The operation of the TBSF is described as follows. A switching header is appended to
each cell when it enters the switching fabric, and it comprises the following four fields:

Figure 8.12 Tandem banyan switching fabric.
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• Activity Bit a: It indicates whether the slot contains a cell (a = 1), or is empty (a = 0).
• Conflict Bit c: It indicates whether the cell has already been misrouted at some previous

stage of the present network (c = 1), or not (c = 0).
• Priority Field P: It is optional and is used if multiple priority is supported over the

switch.
• Address Field D: It contains the destination address, d1, d2, . . . , dn (n = log2 N).

The state of a switching element at stage s of a banyan network is primarily determined
by three bits in each header of the two input cells; namely, a, c, and ds. If multiple priority
is supported, then the switch state also depends on the priority field P. The algorithm is as
follows, where the bits are indexed by 1 and 2 corresponding to the two input cells.

1. If a1 = a2 = 0, then no action is taken, that is, leaves the switch in the present state;

2. If a1 = 1 and a2 = 0, then set the switch according to ds1;

3. If a1 = 0 and a2 = 1, then set the switch according to ds2;

4. If a1 = a2 = 1, then

(a) If c1 = c2 = 1, then no action is taken;

(b) If c1 = 0 and c2 = 1, then set the switch according to ds1;

(c) If c1 = 1 and c2 = 0, then set the switch according to ds2;

(d) If c1 = c2 = 0, then

i. If P1 > P2, then set the switch according to ds1;

ii. If P1 < P2, then set the switch according to ds2;

iii. If P1 = P2, then set the switch according to either ds1 or ds2.

iv. If one of the cells has been misrouted, then set its conflict bit to 1.

In order to minimize the number of bits to be buffered at each stage to perform the above
algorithm, thus to minimize the latency incurred at each stage, the address bit is placed in
the first position of the address field. This can be done by cyclically shifting the address
field by one bit at each stage. It is then possible to keep the latency at each stage, as low as
3 bit times without considering multiple-priority support, and it is constant over all stages.

It is simple to differentiate successful cells and deflected cells at outputs of each banyan
network with the conflict bit: if c = 0, then the cell has been properly routed; if c = 1,
then the cell has been misrouted. A cell with c = 0 is accepted by the output buffer, and is
rejected by the next banyan network by setting the activity bit in that slot to 0. Conversely,
a cell with c = 1 is ignored by the output buffer, but is accepted by the following banyan
network with its conflict bit reset to 0 for further routing.

All cells entering the tandem banyan switch fabric in the same time slot must be bit-
synchronized throughout the entire fabric. If ignoring the propagation delay, the delay for
each cell in a banyan network is constant and is equal to n times the processing delay at a
switching element, or the time difference between two cells emerging from adjacent banyan
networks. In order to have all cells from different banyan networks arriving at an output
buffer at the same time, an appropriate delay element can be placed between each output
and each banyan network.

In addition, the output buffer memory should have an output bandwidth equal to V bit/s
and an input bandwidth equal to KV bit/s to accommodate as many as K cells arriving in
the same slot.
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8.5.2 Shuffle-Exchange Network with Deflection Routing

Liew and Lee [11] considered an N × N shuffle-exchange network (SN) with n = log2 N
stages, each consisting of (N/2)2 × 2 switch elements. Figure 8.13 shows an 8 × 8 SN.
Switch nodes in each stage are labeled by an (n − 1)-bit binary number from top to bottom.
The upper input (output) of a node is labeled with a 0, and the lower input (output) is labeled
with a 1. A cell will be forwarded to output 0(1) at stage i if the ith most significant bit of its
destination address is 0(1). The interconnection between two consecutive stages is called
‘shuffle exchange’. The output an of node X = (a1a2 · · · an−1) is connected to the input a1
of node Y = (a2a3 · · · an) of the subsequent stage. The link between node X and node Y is
labeled as 〈an, a1〉. The path of a cell from input to output is completely determined by the
source address S = s1 · · · sn and the destination address D = d1 · · · dn. It can be expressed
symbolically as follows:

S = s1 · · · sn

〈−, s1〉====⇒ (s2 · · · sn)
〈d1, s2〉====⇒ (s3 · · · snd1)

〈d2, s3〉====⇒ · · · 〈di−1, si〉====⇒ (si+1 · · · snd1 · · · di−1)

〈di , si+1〉====⇒ · · · 〈dn−1, sn〉====⇒ (d1 · · · dn−1)

〈dn,0〉−−−→ d1 · · · dn = D.

The node sequence along the path is embedded in the binary string s2 · · · snd1 · · · dn−1,
represented by an (n − 1)-bit window moving one bit per stage from left to right.

The state of a cell traveling in the SN can be represented by a two-tuple (R, X), where R
is its current routing tag and X is the label of the node that the cell resides. At the first stage,
the cell is in state (dn · · · d1, s2 · · · sn). The state transition is determined by the self-routing

Figure 8.13 8 × 8 shuffle-exchange network.
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algorithm as follows:

(r1 · · · rk , x1x2 · · · xn−1)

input label xn

exchange=====⇒ (r1 · · · rk−1, x1x2 · · · xn−1)

output label rk

shuffle====⇒〈rk , x1〉
(r1 · · · rk−1, x2 · · · xn−1rk).

Notice that the routing bit used in the switching node is removed from the routing tag
after each stage, before the node label is shuffled to the next stage. Finally, the cell will
reach the state (dnd1 · · · dn−1), from which the following 2 × 2 element will switch the cell
to the destination.

When a contention occurs at a switch node, one of cells will be successfully routed
while the other one will be deflected to the wrong output. As a result, only the non-deflected
cells can reach their desired outputs eventually. The deflected cells can restart routing (with
routing tag reset to dn · · · d1) again at the deflection point, and if the SN is extended to
consist of more than n stages, those deflected cells could reach the destination at later
stages. As some cells will reach their destinations after fewer numbers of stages than others,
a multiplexer is needed to collect cells that reach physical links of the same logical address
at different stages. A cell will eventually reach its destination address with good probability
provided that the number of stages L is sufficiently large. If it cannot reach the destination
after L stages, it is considered lost.

8.5.3 Dual Shuffle-Exchange Network with Error-Correcting Routing

The error-correcting SN is highly inefficient, especially when n is large. This is because
routing of the cell must be restarted from the beginning whenever it is deflected. This is
illustrated by the state-transition diagram in Figure 8.14a, where the state is the distance
or the number of stages away from destination. A desired network should be one with
the state-transition diagram shown in Figure 8.14b, in which the penalty is only one step
backward.

An example is the dual shuffle-exchange network that consists of a shuffle exchange
network and an unshuffle-exchange network (USN) [11]. An 8 × 8 USN is shown in
Figure 8.15.

It is the mirror image of the SN. Routing in successive stages is based on the least
significant bit through the most significant bit. Using a numbering scheme similar to that in

Figure 8.14 (a) State-transition diagram of a cell in the shuffle-exchange network, where the
distance from destination is the state; (b) One-step penalty state transition diagram.
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Figure 8.15 8 × 8 unshuffle-exchange network with five stages.

SN, the path of a cell with source address S = s1 · · · sn and destination address D = d1 · · · dn

can be expressed by

S = s1 · · · sn

〈−, sn〉=====⇒ (s1 · · · sn−1)
〈dn, sn−1〉=====⇒ (dns1 · · · sn−2)

〈dn−1, sn−2〉======⇒ · · · 〈di+2, si+1〉======⇒ (di+2 · · · dns1 · · · si)

〈di+1, si〉=====⇒ · · · 〈d2, s1〉=====⇒ (d2 · · · dn)

〈d1, 0〉−−−→ d1 · · · dn = D.

An (n − 1)-bit window sliding on the binary string d2 · · · dns1 · · · sn−1 one bit per stage
from right to left exactly gives the sequence of nodes along the routing path. The initial
state of the cell is (d1 · · · dn, s1 · · · sn−1), and the state transition is given by

(r1 · · · rk , x1x2 · · · xn−1)

input label xn

exchange=====⇒ (r1 · · · rk−1, x1x2 · · · xn−1)

output label rk

unshuffle=====⇒〈rk ,xn−1〉
(r1 · · · rk−1, rkx1 · · · xn−2)

At the last stage, the cell is in state (−d1d2 · · · dn), reaches its destination.
Suppose a USN is overlaid on top of a SN, and each node in the USN is combined with

its corresponding node in SN such that a cell at any of the four inputs of the node can access
any of the outputs of the node. The shuffle and the unshuffle interconnections between
adjacent stages (nodes) compensate each other, so that the error caused by deflection in the
SN can be corrected in the USN in only one step. See Figure 8.16, where cell A enters a
SN from input 010 to output 101, and cell B, from input 100 to output 100. They collide at
the second stage when they both arrive at node 01 and request for output 0. Suppose cell B
wins the contention and cell A is deflected to node 11 in the third stage. Imagine cell A is
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Figure 8.16 Deflection error in SN is corrected with USN.

moved to the companion node 11 in the corresponding USN, and is switched to output 0.
Then it returns at reach node 01, the same node (label) when error occurred, in two stages.
At this point, the deflection error has been corrected and cell A can continue on its normal
path in the SN. Intuitively, any incorrect routing operation is undone in the SN by a reverse
routing operation in the USN.

The above procedure can be formulated more rigorously as follows. Consider a cell in
state (r1 · · · rk , x1 · · · xn−1), the cell should be sent out on link 〈rk , x1〉 in the SN. Suppose
it is deflected to link 〈r̄k , x1〉 instead and reaches node (x2 · · · xn−1r̄k) in the next stage.
The error correction starts by attaching the bit x1 to the routing tag instead of removing
the bit rk , so that the state of the cell will be (r1 · · · rkx1, x2 · · · xn−1r̄k) in the next stage.
Then the cell is moved to the companion node in the USN to correct the error. If the cell is
successively routed this time, it will be sent out on link 〈x1, r̄k〉 and return to the previous
state (r1 · · · rk , x1 · · · xn−1). Similarly, an error occurring in the USN can also be fixed in
one step with the SN. In general, a cell in the SN may also be deflected to a link in the USN
and vice versa, and consecutive deflections can occur. A simple algorithm to take these
considerations into account is described in the following.
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Figure 8.17 8 × 8 dual-shuffle exchange network.

First of all, the companion 2 × 2 switch elements in the SN and in the USN are merged
to form 4 × 4 switch elements to allow cells to be switched between the SN and the USN.
Figure 8.17 shows a dual shuffle-exchange network built with 4 × 4 switch elements. A
new labeling scheme is used. The four inputs (outputs) of a switch node are labeled by 00,
01, 10, 11 from top to bottom. Outputs 00 and 01 are connected to the next stage according
to an unshuffling pattern, while outputs 10 and 11 are connected to the next stage according
to a shuffling pattern. On the other hand, inputs 00 and 01 are connected to the previous
stage according to a shuffling pattern, while inputs 10 and 11 are connected to the previous
stage according to an unshuffling pattern. A link with label 〈1a, 0b〉 is an unshuffle link and
a link with label 〈0a, 1b〉 is a shuffle link. Two nodes (a1 · · · an−1) and (b1 · · · bn−1) are
connected by an unshuffle link 〈0b1, 1an−1〉 if a1 · · · an−2 = b2 · · · bn−1, and by a shuffle
link 〈1bn−1, 0a1〉 if a2 · · · an−1 = b1 · · · bn−2.

Since each switch node has four outputs, two routing bits are required to specify the
desired output of a cell at each stage. A cell with destination D = d1 · · · dn can be either
routed through the USN or the SN. Accordingly, the initial routing tag of a cell is set to
either 0d1 · · · 0dn (USN) or 1dn · · · 1d1 (SN), respectively.

The state of a cell at any particular time is denoted by (c1r1 · · · ckrk , x1 · · · xn−1). There
are two possible regular transitions at a switch node; the cell will be sent out on an unshuffle
link if ck = 0 and a shuffle link if ck = 1. The corresponding state transitions are given by

(c1r1 · · · ckrk , x1 · · · xn−1) −→




〈0rk , 1xn−1〉=======⇒ (c1r1 · · · ck−1rk−1, rkx1 · · · xn−2)

if ck = 0
〈1rk , 0x1〉=====⇒ (c1r1 · · · ck−1rk−1, x2 · · · xn−1rk)

if ck = 1

Without deflections, it is easy to see that a cell with the initial routing set to
0d1 · · · 0dn (1dn · · · 1d1) will stay in the USN (SN) links throughput the routing process
until it reaches the desired destination at one of the USN (SN) links.
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The routing direction is given as follows:

1. If output ckrk is available and k = 1, the cell has reached its destination; output the
cell before the next shuffle if c = 1, and after the next unshuffle if c = 0.

2. If output ckrk is available and k > 1, remove the two least significant bits from the
routing tag and send the cell to the next stage.

3. If output ckrk is unavailable and k < n, choose any other available outputs, attach the
corresponding 2 bits for error-correcting to the routing tag and send the cell to the
next stage.

4. If output ckrk is unavailable and k = n, reset the routing tag to its original value, either
0d1 · · · 0dn or 1dn · · · 1d1; this prevents the length of the routing tag from growing in
an unbounded fashion.

Figure 8.18 illustrates the complete error-correcting algorithm. For any node with label
(x1 · · · xn−1), the error correcting tag of outputs 00 and 01 is 1xn−1, and the error-correcting
tag of outputs 10 and 11 is 0x. In either case, the error-correcting tag is just the second
component c̄x in the link label 〈cr, c̄x〉, where x = xc+c̄(n−1), which is either x1 or xn−1
depending on c = 1 (SN) or c = 0 (USN). Therefore, a cell deflected to link 〈cr, c̄x〉 will
return to its previous state via link 〈c̄x, cr〉 in the next stage. This point is illustrated in
Figure 8.19 by the same example given in Figure 8.16.

Figure 8.18 Error-correcting routing algorithm.
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This algorithm can implicitly handle successive deflections as shown by the finite-state
machine representation of the algorithm in Figure 8.20. The state transitions when deflection
occurred are given by

(c1r1 · · · ckrk , x1 · · · xn−1) −→




〈0r, 1xn−1〉======⇒ (c1r1 · · · ckrk1xn−1, rx1 · · · xn−2)

if ckrk �= 0r
〈1r, 0x1〉=====⇒ (c1r1 · · · ckrk0x1, x2 · · · xn−1r)

if ckrk �= 1r

Figure 8.19 Example of error-correcting routing in DSN.

Figure 8.20 Finite-state machine representation of the error-correcting routing algorithm when
ck = 1.
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8.6 MULTICAST COPY NETWORKS

Figure 8.21 illustrates a serial combination of a copy network and a point-to-point switch
for supporting point-to-multipoint communications [12]. The copy network replicates cells
from various inputs simultaneously, and then copies of broadcast cells are routed to the final
destination by the point-to-point switch.

A copy network consists of the following components and its basic structure is shown
in Figure 8.22.

• Running adder network (RAN) generates running sums of the copy numbers, specified
in the headers of input cells.

• Dummy address encoder (DAE) takes adjacent running sums to form a new header for
each cell.

Figure 8.21 Multicast cell switch consists of a copy network and a point-to-point switch.

Figure 8.22 Basic components in a nonblocking copy network.
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Figure 8.23 Header translations in the copy network.

• Broadcast banyan network (BBN) is a banyan network with broadcast switch nodes
capable of replicating cells based on two-bit header information.

• Trunk number translator (TNT) determines the outgoing trunk number for each cell
copy.

The multicasting mechanism of the copy network lies in the header translations illustrated
in Figure 8.23. First, the number of copies (CNs) specified in the cell headers are added
up recursively over the running adder network. Based on the resulting sums, the dummy
address encoders form new headers with two fields: a dummy address interval and an
index reference (IR). The dummy address interval is formed by the adjacent running sums,
namely, the minimum (MIN) and the maximum (MAX). The index reference is set equal to
the minimum of the address interval, and is used later by the trunk number translators to
determine the copy index (CI). The broadcast banyan network replicates cells according
to a Boolean interval splitting algorithm based on the address interval in the new header.
When a copy finally appears at the desired output, the TNT computes its copy index from
the output address and the index reference. The broadcast channel number (BCN) and the
copy index form a unique identifier into a trunk number (TN), which is added to the cell
header and used to route the cell to its final destination.

8.6.1 Broadcast Banyan Network

Generalized Self-Routing Algorithm. A broadcast banyan network is a banyan net-
work with switch nodes that are capable of replicating cells. A cell arriving at each node can
be either routed to one of the output links, or it can be replicated and sent out on both links.
There are three possibilities and the uncertainty of making a decision is log2 3 = 1.585,
which means that the minimum header information for a node is 2 bits.

Figure 8.24 illustrates a generalization of the 1-bit self-routing algorithm to the multi-bit
case for a set of arbitrary N-bit destination addresses. When a cell arrives at a node in stage
k, the cell routing is determined by the kth bits of all destination addresses in the header.
If they are all ‘0’ or all ‘1’, then the cell will be sent out on link 0 or link 1, respectively.
Otherwise, the cell and its copy are sent out on both links and the destination addresses in
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Figure 8.24 Input–output tree generated by generalized self-routing algorithm.

the header are modified correspondingly to the two cell copies: the header of the cell copy
sent out on link 0 or link 1, contains those addresses in the original header with the kth bit
equal to 0 or 1, respectively.

Several problems may arise in implementing the generalized self-routing algorithm.
First, a cell header contains a variable number of addresses and the switch nodes have to
read all of them. Second, the cell header modification depends on the entire set of addresses,
which is a processing burden on switch nodes. Finally, the set of paths from any input to a
set of outputs forms a tree in the network. The trees generated by an arbitrary set of input
cells are not link-independent in general and the network is obviously blocking due to the
irregularity of the set of actual destination addresses in the header of each cell. However,
fictitious addresses instead of actual addresses can be used in the copy network, where cells
are replicated but need not be routed to the actual destinations. The fictitious addresses for
each cell may then be arranged to be contiguous such that an address interval consisting
of the MIN and the MAX can represent the whole set of fictitious addresses. The address
intervals of input cells can be specified to be monotonic to satisfy the nonblocking condition
for the broadcast banyan network described below.

Boolean Interval Splitting Algorithm. An address interval is a set of contiguous N-
bit binary numbers, which can be represented by two numbers, namely, the minimum and
the maximum. Suppose that a node at stage k receives a cell with the header containing
an address interval specified by the two binary numbers: min(k − 1) = m1 · · · mN and
max(k − 1) = M1 · · · MN , where the argument (k − 1) denotes stage (k − 1) from where
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Figure 8.25 Switch node logic at stage k of a broadcast banyan network.

the cell came to stage k. The generalized self-routing algorithm gives the direction for cell
routing as follows, and as illustrated in Figure 8.25.

• If mk = Mk = 0 or mk = Mk = 1, then send the cell out on link 0 or 1, respectively.
• If mk = 0 and Mk = 1, then replicate the cell, modify the headers of both copies

(according to the scheme described below) and send each copy out on the corresponding
link.

The modification of a cell header is simply splitting the original address interval into
two subintervals, as expressed in the following recursion. For the cell sent out on link 0,

{
min(k) = min(k − 1) = m1 · · · mN

max(k) = M1 · · · Mk−101 · · · 1,

and for the cell sent out on link 1,

{
min(k) = m1 · · · mk−110 · · · 0

max(k) = max(k − 1) = M1 · · · MN .

Figure 8.26 illustrates the Boolean interval splitting algorithm. From the rules it is
realized that mi = Mi, i = 1, . . . , k − 1 holds for every cell that arrives at stage k. The event
mk = 1 and Mk = 0 will never occur.
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Figure 8.26 Boolean interval splitting algorithm generates the tree while replicating a cell according
to the address intervals.

Nonblocking Condition of Broadcast Banyan Networks. A broadcast banyan net-
work is nonblocking if the active inputs x1, . . . , xk and the corresponding sets of outputs
Y1, . . . , Yk satisfy the following:

(1) (Monotone): Y1 < Y2 < · · · < Yk , or Y1 > Y2 > · · · > Yk .

(2) (Concentration): Any input between two active inputs is also active.

The above inequality Yi < Yj means that every output address in Yi is less than
any output address in Yj. Figure 8.27 illustrates a nonblocking example with active
inputs x1 = 7, x2 = 8, x3 = 9, and corresponding outputs Y1 = {1, 3}, Y2 = {4, 5, 6},
Y3 = {7, 8, 10, 13, 14}.
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Figure 8.27 Example to demonstrate the nonblocking condition of broadcast banyan network.

8.6.2 Encoding Process

The RAN together with the DAEs is used to arrange the destination addresses for each
cell so that every eligible cell can be replicated appropriately in the broadcast banyan net-
work without any conflicts. Cell replications in the broadcast banyan network are aided
by two processes, an encoding process and a decoding process. The encoding process
transforms the set of copy numbers, specified in the headers of incoming cells, into a
set of monotone address intervals that form the cell headers in the broadcast banyan net-
work. This process is carried out by a running adder network and a set of dummy address
encoders. The decoding process determines the destinations of copies with the trunk number
translators.

The recursive structure of the log2 N-stage running adder network is illustrated in
Figure 8.28. The adder network consists of (N/2) log2 N adders, each with two inputs
and two outputs where a vertical line denotes a pass. The east output is the sum of both
the west and the north inputs, while the south output just propagates the north input
down. The running sums of CNs are then generated at each port after log2 N stages,
before the dummy address encoders form the new headers from adjacent running sums.
The new header consists of two fields: one is the dummy address interval represented
by two log2 N-bit binary numbers (the minimum and the maximum), and the other con-
tains an index reference that is equal to the minimum of the address interval. Note that
the length of each interval is equal to the corresponding copy number in both addressing
schemes.

Denote Si as the ith running sum, the sequence of dummy address intervals will be
generated as follows:

(0, S0 − 1), (S0, S1 − 1), . . . , (SN−2, SN−1 − 1),

where the address is allocated beginning with 0. As shown in the previous section, this
sequence satisfies the nonblocking condition over the broadcast banyan network.
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Figure 8.28 Running adder network and dummy address encoders.

8.6.3 Concentration

To satisfy the nonblocking condition of the broadcast banyan network, idle inputs between
active inputs must be eliminated. This function should be performed before cells enter
the broadcast banyan network, for example, prior to the BBN or right after the DAE in
Figure 8.22. A reverse banyan network is thus used to concentrate active inputs into a
contiguous list. As illustrated in Figure 8.29, the routing address in the reverse banyan
network is determined by the running sums over activity bits to produce a set of continuous
monotonic addresses.

Figure 8.29 Input concentrator consists of a running adder network and a reverse banyan network.
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8.6.4 Decoding Process

When a cell emerges from the broadcast banyan network, the address interval in its header
contains only one address, that is, according to Boolean interval splitting algorithm,

min(log2 N) = max(log2 N) = output address.

The cell copies belonging to the same broadcast channel should be distinguished by copy
index, which is determined at the output of broadcast banyan network (see Figure 8.30) by,

copy index = output address − index reference.

Recall that the index reference is initially set equal to the minimum of address interval.
A trunk number translator is used to assign the actual address to each cell copy so that it

will be routed to its final destination in the succeeding point-to-point switch. Trunk number
assignment can be accomplished by a simple table lookup identifier (searching key) that
consists of the broadcast channel number (BCN) and the copy index (CI) associated with
each cell. When a TNT receives a cell copy, it first converts the output address and IR
into CI, and then replaces the BCN and CI with the corresponding trunk number in the
translation table. The translation process is illustrated in Figure 8.31.

8.6.5 Overflow and Call Splitting

Overflow will occur in the RAN of the copy network when the total number of copy requests
exceeds the capacity of the copy network. If partial service (also called call splitting) is not
allowed in cell replication and a cell must generate all its copies in a time slot, then the
throughput may be degraded when overflow occurs. As illustrated in Figure 8.32, overflow
occurs at port 3 and only five cell copies are allowed although more than eight requests are
available.

Figure 8.30 Computation of copy indexes.



Book1099 — First Proof — “c08” — 2007/4/17 — 21:24 — page 311 — #28

8.6 MULTICAST COPY NETWORKS 311

Figure 8.31 Trunk number translation by table lookup.

Figure 8.32 8 × 8 nonblocking copy network without call-splitting: only five instead of eight cell
copies are allowed in this time slot.

8.6.6 Overflow and Input Fairness

Overflow will also introduce unfairness among incoming cells, because the starting point
of the RAN is fixed. Since the calculation of running sum always starts from input port 0 in
every time slot, lower numbered input ports have higher service priorities than the higher
numbered ports.

This unfairness problem will be solved if the RAN is re-designed to calculate the running
sums cyclically starting from any input port, and the starting point of computing the running
sums in every time slot is determined adaptively by the overflow condition in the previous
time slot. A cyclic RAN (CRAN) is illustrated in Figure 8.33. The current starting point is
port 3, and call-splitting is performed at port 6 and the new starting point in the next slot
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Figure 8.33 CRAN in an 8 × 8 copy network.

will be port 6. The negative index reference −3, provided by the DAE, implies that the copy
request from port 3 is a residual one, and three copies have been generated in the previous
time slot.

Cyclic running adder network Figure 8.34 shows the structure of an 8 × 8 CRAN.
The associated cell header format consists of three fields: starting indicator (SI), running
sum (RS), and routing address (RA). Only one port, the starting point, has a nonzero SI

Figure 8.34 8 × 8 cyclic running adder network (CRAN).
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initially. The RS field is initially set equal to the number of copies requested by the input
cell. The RA field is initially set equal to 1 if the port is active, otherwise it is set to 0. At the
output of the running adder network, the RA field will carry the running sum over activity
bits, to be used as the routing address in the following concentrator.

A set of cyclic passing paths is implemented in each stage of CRAN so that recursive
computation of running sums can be done cyclically. In order to emulate the actual running
sums computation from a starting point, however, some passing paths should be virtually
cut as illustrated in Figure 8.34, which is equivalent to the shaded nodes ignoring their links
while computing the running sums. These nodes are preceded by a cell header with the
SI field equal to 1, as it is propagated from the starting point over the CRAN. The header
modification in a node is summarized in Figure 8.35.

The next starting point will remain the same unless overflow occurs, in which case, the
first port facing the overflow will be the next starting point. If we denote the starting point
as port 0, and number other ports from 1 to N − 1 in a cyclic manner, then the SI bit that
indicates the next starting point is updated with adjacent RS fields at each port as follows:

SI0 =
{

1 if RSN−1 ≤ N

0 otherwise

and

SIi =
{

1 if RSi−1 ≤ N and RSi > N

0 otherwise,

where i = 1, 2, . . . , N − 1.
In order to support call-splitting, every input port should know how many copies are

served in each time slot. This piece of information is called starting copy number (SCN).
A set of feedback loops is then established to send this information back to input ports after
it is determined with adjacent running sums as follows:

SCN0 = RS0,

and

SCNi =
{

min(N − RSi−1, RSi − RSi−1) if RSi−1 < N

0 otherwise

Figure 8.35 Operation of a node in CRAN.



Book1099 — First Proof — “c08” — 2007/4/17 — 21:24 — page 314 — #31

314 BANYAN-BASED SWITCHES

Figure 8.36 Cyclic monotone addresses give rise to cell collisions in the reverse banyan network.
Port 2 and port 6 are idle.

Figure 8.37 Additional RAN is used to concentrate active cells. The starting point is marked by
encircling its copy request.

Concentration. The starting point in a CRAN may not be port 0, and the resulting
sequence of routing addresses in the reverse banyan network (RBN) may not be continuous
monotone. As illustrated in Figure 8.36, internal collisions may occur in the RBN.

This problem can be solved if an additional RAN with fixed starting point (port 0) is
added in front of the RBN.As shown in Figure 8.37, this additional RAN will recalculate the
running sums of RAs so that the resulting sequence of RAs becomes continuous monotone.
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