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CHAPTER 7

INPUT-BUFFERED SWITCHES

Fixed-length switching technology is widely accepted as an efficient approach to achieving
high switching efficiency for high-speed packet switches. Variable-length IP packets are
segmented into fixed-length “cells” at inputs and are reassembled at the outputs. When
high-speed packet switches were constructed for the first time, they used, either internal
shared buffer or input buffer and suffered the problem of throughput limitation. As a result,
historically most research focused on the output buffering architecture. Since the initial
demand for switch capacity was in the range of a few hundred Mbit/s to a few Gbit/s, out-
put buffered switches seemed to be a good choice because of their high throughput/delay
performance and memory utilization (for shared memory switches). In the first few years
of deploying ATM switches, output buffered switches (including shared memory switches)
dominated the market. However, as the demand for large-capacity switches increased rapidly
(either line rates or the switch port number increased), the speed requirement for the memory
had to increase accordingly. This limits the capacity of output buffered switches. Although
output buffered switches have optimal delay-throughput performance for all traffic distri-
butions, the N-times speed-up for the memory operation speed limits the scalability of
this architecture. Therefore, in order to build larger-scale and higher-speed switches, peo-
ple now have focused on input-buffered, or combined-input-output-buffered switches with
advanced scheduling and routing techniques, which are the main subjects of this chapter.

Input buffered switches are desirable for high-speed switching, since the internal opera-
tion speed is only moderately higher than the input line speed. But there are two problems:
(1) throughput limitation due to the head-of-line (HOL) blocking (throughput limited to
58.6 percent for FIFO buffering), and (2) the need of arbitrating cells due to output port
contention. The first problem can be circumvented by moderately increasing the switch
fabric’s operation speed or the number of routing paths to each output port (i.e., allow-
ing multiple cells arriving at the output port at the same time slot). The second problem
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is resolved by novel, fast arbitration (i.e., scheduling) schemes that are described in this
chapter. According to Moore’s Law, memory density doubles every 18 months. But the
memory speed increases at a much slower rate. For instance, the memory speed is 4 ns for
state-of-the-art CMOS static RAM compared to 5 ns one or two years ago. On the other
hand, the speed of logic circuits has increased at a much higher rate than that of memory.
Recently, much research has been devoted to devising faster scheduling schemes to arbitrate
cells from input ports to output ports.

Some scheduling schemes even consider per-flow scheduling at the input ports to meet
the delay/throughput requirements for each flow, which of course greatly increases imple-
mentation complexity and cost. Scheduling cells on a per-flow basis at input ports is much
more difficult than at output ports. For example, at an output port, cells (or packets) can be
time-stamped with values based on their allocated bandwidth and transmitted in an ascend-
ing order of their time stamp values. However, at an input port, scheduling cells must take
output port contention into account. Thus, it makes the problem so complicated that so far
no feasible scheme has been devised.

7.1 SCHEDULING IN VOQ-BASED SWITCHES

The basic input buffer switch model is shown in Figure 7.1. A FIFO queue is implemented
in front of each input of the switch fabric, and is used to store incoming packets. They are
then scheduled to transmit to the switch fabric. Because of the HOL blocking, Section 5.3
shows that the overall throughput of the input buffer structure is limited to 58.6 percent
under uniform traffic, and even worse under non-uniform traffic.

Because of the throughput limitation from the FIFO queue structure, virtual output
queue (VOQ) structure, as shown in Figure 7.2, has been widely used to eliminate the HOL
blocking and thus improves the system throughout. In each input buffer, there are N FIFO
queues (N is the switch size), each corresponding to an output port, or N2 FIFO queues in
total. In other words, packets/cells arriving at input port i and destined for output port j are
stored in VOQi, j (i.e., Qi, j in Fig. 7.2). The HOL cell of each VOQ can be scheduled for
transmission in every time slot. However, there will be at most one cell among the N VOQs
being selected for transmission.

The cell arrival to input port i is a stochastic process Ai(t). Within each time slot, there
is at most one arrived at each input port. The cell that arrived at input port i and destined to
output j is put into queue Qij. At time slot t, the queue length of Qij is denoted as Lij(t).

Aij(t) denotes the arrival process from input i to output j with an arrival rate of λij, and
A(t) = {Aij(t), 1 ≤ i ≤ N and 1 ≤ j ≤ N}. If the arrivals to each input and each output are

Figure 7.1 Input-buffered switch model with FIFO queues.
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Figure 7.2 Input-buffered structure with virtual output queues.

admissible, that is,

N∑
i=1

λij < 1, ∀j and
N∑

j=1

λij < 1, ∀i

then the set A(t) is admissible. Otherwise, it is not admissible. The arrival rate matrix is
denoted as � = [λij].

Let the service matrix S(t) = [sij(t)]N×N represent the matchings at time slot t with each
element:

sij(t) =
{

1, if a cell is transfered from i to j

0, otherwise

A cell arrival that is an independent process satisfies the following two conditions: (1)
Cell arrivals to each input port are independent and identically distributed; (2) The arrivals
to an input port are independent from other input ports. If the arrival rates are equal, and the
destinations are uniformly distributed among all output ports, then the arrival distribution
is said to be uniform.

Throughput and delay are used to evaluate a switch’s performance. Throughput is defined
to be the average number of cells transmitted in a time slot, and delay is defined to be the
time experienced by a cell from arrival to departure. A switch is defined to be stable, if the
expected queue length is bounded, that is,

E


∑

ij

Lij


 < ∞, ∀t.

If a switch is stable under any independent and admissible input traffic, then the switch can
achieve 100 percent throughput.

Sophisticated scheduling algorithms are required to schedule cells to the switch fabric in
each time slot. These scheduling algorithms can be modeled as a bipartite graph matching
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Figure 7.3 Bipartite graph matching example.

problem. In Figure 7.3, N nodes on the left stand for the N input ports, while the N nodes on
the right stand for N output ports. The edge between an input port and an output port denotes
that there are requests for cells to be transferred between them. A scheduler is responsible
for selecting a set of the edges (also called matches) from at most N2 edges, where each
input is connected to at most one output and each output is connected to at most one input.
A matching example is shown in Figure 7.4 where the dotted lines represent the requests
that are not granted. A matching of input–output can be represented as a permutation matrix
M = (Mi, j), i, j ≤ N , where Mi, j = 1 if input i is matched to output j in the matching.

To select a proper scheduling algorithm, several factors must be considered:

Efficiency. The algorithm should achieve high throughput and low delay. In other words,
select a set of matches with more edges in each time slot.

Fairness. The algorithm should avoid the starvation of each VOQ.

Stability. The expected occupancy of each VOQ should remain finite for any admissible
traffic pattern.

Implementation Complexity. The algorithm should be easy for hardware implementa-
tion. High implementing complexity will cause long scheduling time, which further
limits the line speed of the switch.

With the above design objectives, many scheduling algorithms have been proposed. We
will examine some of these algorithms in detail.

Figure 7.4 Matching example.
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Figure 7.5 Maximum weight match example.

7.2 MAXIMUM MATCHING

7.2.1 Maximum Weight Matching

In a bipartite graph, we define wi, j as the weight of edge ei, j, from input i to output j. Weight
of a VOQ refers usually, but not restricted to, the length (number of packets in backlog)
of the VOQ. The maximum weight matching (MWM) M for a bipartite graph is one that
maximizes

∑
e(i, j)∈M wi, j. Figure 7.5 shows an example of a maximum weight match.

Theorem 1: A maximum weight matching algorithm achieves 100 percent throughput
under any admissible traffic [1, 2].

MWM can be solved in time O(N3) [3], which is, too large for a high-speed packet
switch. By carefully selecting the weight of each edge, or using approximations of MWM,
we can reduce the complexity of computing maximum weight matches.

LQF (longest queue first) and OCF (oldest cell first) [1] are two MWM algorithms that
were proposed early on. LQF uses the queue length Lij(t) as the weight wij(t) and OCF
uses the HOL cell’s waiting time as the weight wij(t). Under admissible traffic, these two
algorithms can achieve 100 percent throughput. Under inadmissible traffic, starvation can
occur for LQF, but not for OCQ. In order to reduce the complexity of LQF, the LPF (longest
port first) algorithm is proposed [4] with weight wij(t) defined to be the port occupancy:

wij(t) =
{

Ri(t) + Cj(t), Lij(t) > 0

0, otherwise

where Ri(t) = ∑N
j=1 Lij(t), Cj(t) = ∑N

i=1 Lij(t). Since the weight of LPF is not equal to
the queue length, it has the advantage of both maximum size matching (MSM) and MWM.

7.2.2 Approximate MWM

In the work of Shah and Kopikare [5], a class of approximations to MWM, 1-APRX, was
proposed and defined as follows. Let the weight of a schedule obtained by a scheduling
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algorithm B be WB. Let the weight of the maximum weight match for the same switch state
be W∗. B is defined to be a 1-APRX to MWM, if the following property is always true:
WB ≥ W∗ − f (W∗), where f (·) is a sub-linear function, that is, limx→∞ [ f (x)/x] = 0 for
any switch state.

Theorem 2: Let W∗(t) denote the weight of maximum weight matching scheduling at time
t, with respect to switch state Q(t) (where Q(t) = [Qi, j(t)] and Qi, j(t) denotes the number
of cells in VOQi, j). Let B be a 1-APRX to MWM and WB(t) denote its weight at time t.
Further, B has a property that,

WB(t) ≥ W∗(t) − f (W∗(t)), ∀t, (7.1)

where f (·) is a sub-linear function. Then the scheduling algorithm B is stable under any
admissible Bernoulli i.i.d. input traffic.

Theorem 2 can be used to prove the stability of some matching algorithms that are not
MWM and with lower complexity. Examples are the de-randomized matching algorithm
with memory in Section 7.5.2 and the Exhaustive Service Matching with Hamiltonian Walk
in Section 7.4.4.

7.2.3 Maximum Size Matching

Maximum size matching (MSM) finds the match containing the maximum number of edges.
Obviously, maximum size matching is a special case of the maximum weight matching
when the weight of each edge is 1. The time complexity of MSM is O(N2.5) in survey [6].
Figure 7.6 shows an example of a maximum size match.

It has been shown by simulation that MSM delivers 100 percent throughput when the
traffic is permissible uniform [7]. However, under admissible nonuniform traffic, it can lead
to instability and unfairness, and under impermissible distribution, it can lead to starvation
for some ports [1].

Figure 7.6 Maximum size match (MSM) example.
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7.3 MAXIMAL MATCHING

A maximal matching algorithm leads to a maximal match by adding connections incremen-
tally, without removing connections made earlier in the matching process. In a maximal
match, if a nonempty input is not matched to any output, all destination outputs of the cells
waiting in this input must have been matched to other inputs. Figure 7.7 shows an example
of a maximal match. Generally speaking, a maximal match has fewer matched edges than
a maximum size match, but is simpler to implement.

Maximal matching algorithms have lower implementation complexity than MWM. How-
ever, simulation results show that maximal matching achieves 100 percent throughput under
uniform traffic, but not under nonuniform traffic. Speedup is needed to guarantee 100 per-
cent throughput when a maximal matching algorithm is used. A switch with a speedup of
s can transfer up to s cells from each input and up to s cells to each output within a time slot.
An output-queued switch has a speedup of N and an input-queued switch has a speedup
of 1. Usually, when 1 < s < N , the switch is called a combined input- and output-queued
(CIOQ) switch, since cells need to be buffered at the inputs before switching as well as at
the outputs after switching.

Theorem 3: Under any admissible traffic, a CIOQ switch using any maximal matching
algorithm achieves 100 percent throughput for any speedup s ≥ 2 [8, 9].

One way to implement maximal matching is to use iterative matching algorithms that
use multiple iterations to converge on a maximal match. In each iteration, at least one
more connection is added to the match before a maximal match is achieved. Therefore, a
maximal match can always be found within N iterations. Some multiple iteration matching
algorithms converge faster and require fewer iterations, for example, log2 N . The main
difference between various iterative matching algorithms is the rationale for selection of
input ports to grant, and output ports to accept, when scheduling.

Figure 7.7 Maximal match example.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 232 — #8

232 INPUT-BUFFERED SWITCHES

7.3.1 Parallel Iterative Matching (PIM)

The PIM scheme [10] uses random selection to solve the contention between inputs and
outputs. Input cells are first queued in VOQs. Each iteration consists of three steps. There
can be up to N iterations in each time slot. Initially, all inputs and outputs are unmatched
and only those inputs and outputs that are not matched at the end of an iteration will be
eligible to participate in the next matching iteration. The three steps in each iteration operate
in parallel on each input and output as follows.

Step 1: Request. Each unmatched input sends a request to every output for which it has
a queued cell.

Step 2: Grant. If an unmatched output receives multiple requests, it grants one by
randomly selecting a request over all requests. Each request has an equal probability
of being granted.

Step 3: Accept. If an input receives multiple grants, it selects one to accept in a fair
manner and notifies the output.

Figure 7.8 shows an example of PIM in the first iteration. In step 1, input 1 requests
output 1 and 2, input 3 requests output 2 and 4, input 4 requests output 4. In step 2, output
1 grants the only request from input 1, output 2 randomly chooses input 3 to grant, and
output 4 chooses input 3. In the last step 3, input 1 accepts the only grant from output 1 and
input 3 randomly chooses output 2 to accept.

It has been shown that each iteration resolves, on average, at least 25 percent of the
remaining unresolved requests. Thus, the algorithm converges at O(log N) iterations, where
N denotes the number of ports. No memory or state is used to keep track of how recently
a connection was made in the past since, at the beginning of a cell time slot, the match
begins over, independently of the matches that were made in previous cell time slots. On
the other hand, PIM does not perform well for a single iteration. The throughput of PIM
for one iteration is about 63 percent under uniform traffic. The reason is as follows:

Figure 7.8 Parallel iterative matching (PIM) example.
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Figure 7.9 Example of unfairness in PIM under heavy, oversubscribed load with more than one
iteration.

Assume that each VOQ of an N × N switch is nonempty. With PIM, each output will
receive N requests, one from each input. The probability that an output selects a particular
input to grant is 1/N , so that the probability that an input is not selected by an output is
1 − (1/N). If an input is granted by at least one output, this input will randomly select one
of them to accept and be matched. In other words, if an input does not receive any grant, it
will not be matched. This will happen when none of the outputs selects this input to grant,
with a probability of [1 − (1/N)]N , or 1/e as N → ∞. Therefore, the throughput tends to
1 − (1/e) � 0.63 as N → ∞.

Thus, under uniform traffic, PIM achieves 63 percent and 100 percent throughput for
1 and N iterations, respectively. Despite the 100 percent throughput PIM achieves with N
iterations. When the switch is oversubscribed, PIM can lead to unfairness between connec-
tions [11]. Figure 7.9 shows such a situation. In the figure, input port 1 has cells to output
port 1 and 2 in every time slot and similarly input port 2 has cells to output port 1. Under
PIM, input port 1 will only accept output port 1 for a quarter of the time since output port 1
should first grant input port 1 and then input port 1 should accept output port 1. However,
since no input port competes with input port 1 at output port 2, input port 1 will accept
output port 2 during the other three quarters of the time. This results in unfairness between
traffic from input port 1 to output port 1 and from input port 1 to output port 2. Moreover,
implementing a random function at high speed can be expensive.

7.3.2 Iterative Round-Robin Matching (iRRM)

The iRRM scheme [12] works similar to PIM, but uses the round-robin schedulers instead
of random selection at both inputs and outputs. Each scheduler maintains a pointer pointing
at the port that has the highest priority. Such a pointer is named accept pointer ai at input i
and grant pointer gj at output j. The steps for this algorithm are as follows:

Step 1: Request. Each unmatched input sends a request to every output for which it has
a queued cell.

Step 2: Grant. If an unmatched output receives any requests, it chooses the one that
appears next in a round-robin schedule starting from the highest priority element.
The output notifies each input whether or not its request was granted. The pointer gi

is incremented (module N) to one location beyond the granted input.

Step 3: Accept. If an input receives multiple grants, it accepts the one that appears next
in its round-robin schedule starting from the highest priority element. Similarly, the
pointer aj is incremented (module N) to one location beyond the accepted output.
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An example is shown in Figure 7.10. In this example, we assume that the initial value of
each grant pointer is input 1 (e.g., gi = 1). Similarly, each accept pointer is initially pointing
to output 1 (e.g., aj = 1). During step 1, the inputs request transmission to all outputs that
they have a cell destined for. In step 2, among all received requests, each grant scheduler
selects the requesting input that is nearest to the one currently pointed to. Output 1 chooses
input 1, output 2 chooses input 1, output 3 has no requests, and output 4 chooses input 3.
Then, each grant pointer moves one position beyond the selected one. In this case, g1 = 2,
g2 = 2, g3 = 1, and g4 = 4. In step 3, each accept pointer decides which grant is accepted
in a similar way as the grant pointers did. In this example, input 1 accepts output 1, and
input 3 accepts output 4; then a1 = 2, a2 = 1, a3 = 1, and a4 = 1. Notice that the pointer
a3 accepted the grant issued by output 4, so the pointer returns to position 1.

Although iRRM brings good fairness by using a round-robin policy, it actually does
not achieve much higher throughput than PIM under 1 iteration. This is predominantly
due to the output pointer update mechanism. Considering the situation when input port i
with accept pointer pointing to j has cells for all output ports, and the grant pointers in
all output point to i, with one iteration, only one cell will be transferred in the system
from input port i to output port j. It is worse that all output pointers are updated to i + 1
identically. This phenomenon in iRRM is called output synchronization. It significantly
degrades the throughput of iRRM. An example is given in Figure 7.11. The 2 × 2 switch
with one iteration iRRM will only achieve 50 percent throughput under heavy load.

7.3.3 Iterative Round-Robin with SLIP (iSLIP)

As illustrated in the above section, although easily implemented in hardware, the iRRM,
in some cases, suffers from output synchronization. An enhanced scheme (iSLIP) was
presented in the work of McNeown [11].

The steps for this scheme are as follows:

Step 1: Request. Each unmatched input sends a request to every output for which it has
a queued cell.

Step 2: Grant. If an unmatched output receives multiple requests, it chooses the one
that appears next in a fixed, round-robin schedule starting from the highest priority
element. The output notifies each input whether or not its request was granted. The
grant pointer gi is incremented (module N) to one location beyond the granted input
if and only if the grant is accepted in step 3 of the first iteration.

Step 3: Accept. If an input receives multiple grants, it accepts the one that appears next
in a fixed, round-robin schedule starting from the highest priority element. The pointer
aj is incremented (modulo N) to one location beyond the accepted output. The accept
pointers ai are only updated in the first iteration.

The main difference compared to iRRM is that in iSLIP, the grant pointers update their
positions only if their grants are accepted. Also, the output grant pointer and input accept
pointer will only be updated during the first iteration, since if the pointers are updated in
each iteration, some connection may be starved indefinitely. Figure 7.12 shows an example.
It depicts a request graph in the first time slot. Assume that the accept pointer of input port
1 points to output port 1, and the grant pointer of output 2 points to input port 1. During
the first iteration of that time slot, the input port 1 will accept output port 1, and in the
second iteration, output port 2 will grant input port 2, since input port 1 has been connected.
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Figure 7.10 iRRM example.
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Figure 7.11 Synchronization of output arbiters leads to a throughput of just 50 percent in iRRM
under heavy, oversubscribed load with more than one iteration.

Figure 7.12 Request graph when iSLIP will cause starvation if pointers are updated in every
iteration.

When the input port 2 finally accepts output port 2, the grant pointer in output port 2 will be
updated beyond input port 1 to port 3. So the connection between input port 1 and output
port 2 may be postponed indefinitely.

However, in this scheme of updating pointer only in first iteration, starvation is avoided
because every requesting pair will be served within 2N time slots, and the newest connected
pair is assigned the lowest priority.

Because of the round-robin motion of the pointers, the algorithm provides a fair allocation
of bandwidth among all flows. This scheme contains 2N arbiters, where each arbiter is
implementable with low complexity. The throughput offered with this algorithm is 100
percent under uniform traffic for any number of iterations due to the desynchronization
effect (see Section 7.3.5). A matching example of this scheme is shown in Figure 7.13.
Considering the example from the iRRM discussion, initially all pointers aj and gi are set
to 1. In step 2 of iSLIP, the output accepts the request that is closer to the pointed input
in a clockwise direction; however, in a manner different from iRRM, the pointers gi are
not updated in this step. They wait for the acceptance result. In step 3, the inputs accept
the grant that is closer to the one pointed to by ai. The accept pointers change to one
position beyond the accepted one, a1 = 2, a2 = 1, a3 = 1, and a4 = 1. Then, after the
accept pointers decide which grant is accepted, the grant pointers change to one position
beyond the accepted grant (i.e., a non-accepted grant produces no change in a grant pointer
position). The new values for these pointers are g1 = 2, g2 = 1, g3 = 1, and g4 = 4. In the
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Figure 7.13 iSLIP example.
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following iterations, only the unmatched input and outputs are considered and the pointers
are not modified (i.e., updating occurs in the first iteration only).

iSLIP can achieve 100 percent throughput with a single iteration under uniform Bernoulli
independent and identically distributed (i.i.d.) arrival traffic [13, 14]. This is because, within
a finite time, the pointer of each output arbiter will point to an input different from all other
output pointers, so that every input will have one cell to be served in every time slot. We
will show this by using a ball game.

Under heavy traffic, the iSLIP scheduling algorithm reduces to the following rules:

• In any time slot, each input sends requests to every output.
• At any output, if the pointer points to k in a time slot, this output grants the request

from the kth input. If the grant is selected to be accepted by the kth input arbiter, in
the next time slot the pointer points to (k + 1) mod N ; if it is not selected, in the next
time slot the pointer will be still at k.

• At any input k, if only one output arbiter pointer points to k, this output will be selected
by input k; if there are m(m > 1) output arbiter pointers pointing to input k, one of
them will be selected.

We define a vector Xi = (x1,i, . . . , xk,i, . . . , xN ,i) to express the state of input arbiters;
in time slot i, there are xk,i output arbiter pointers pointing to input k, k = 1, . . . , N ,
0 ≤ xk,i ≤ N ,

∑N
k=1 xk,i = N .

If at time slot i, xk,i = 1, k = 1, . . . , N , which indicates that each input is pointed by
an output arbiter pointer, then the throughput is 100 percent in this time slot. We will now
proceed to show Xi = (1, 1, . . . , 1) for all i ≥ N − 1. Thus a throughput of 100 percent can
be sustained indefinitely after N − 1 time slots.

To simplify the notation, we will drop the mod N , that is, (k + l) mod N will be
represented by k + l. Using the iSLIP arbitration rules to the vector Xi, we get:

xk,i+1 =




0 xk,i ≤ 1, xk−1,i = 0

xk,i − 1 xk,i > 1, xk−1,i = 0

1 xk,i ≤ 1, xk−1,i > 0

xk,i xk,i > 1, xk−1,i > 0

(7.2)

By cyclically shifting Xi to the left by one slot every slot time, we get another vector
Yi = ( y1,i, . . . , yk,i, . . . , yN ,i). This Yi is defined as follows: in time slot 0,

Y0 = X0 (7.3)

that is, yk,0 = xk,0, k = 1, . . . , N , and in time slot m ≥ 0,

yk,m = xk+m,m, k = 1, . . . , N (7.4)

At any time slot, yk,i represents the state of one input arbiter. If, and only if, in time slot
i, yk,i = 1 for all k = 1, . . . , N , then xk,i also equals to 1 for all k. Therefore it is sufficient to
show that Yi = (1, 1, . . . , 1) for all i ≥ N − 1 to prove the 100 percent throughput of iSLIP
under uniform traffic.
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According to (7.2), (7.3), and (7.4), we get

yk,i+1 =




0 yk+1,i ≤ 1, yk,i = 0 (condition 1)
yk+1,i − 1 yk+1,i > 1, yk,i = 0 (condition 2)
1 yk+1,i ≤ 1, yk,i > 0 (condition 3)
yk+1,i yk+1,i > 1, yk,i > 0 (condition 4)

(7.5)

From (7.5), by considering the third and fourth conditions, we can conclude that when-
ever yk is larger than 0, it will always be larger than 0 after that. According to this conclusion,
if in time slot i, yk,i = 1 for all k = 1, . . . , N , then for any time slot j > i, all yk,j will always
be larger than 0. Since there are N inputs and N outputs, and

∑N
k=1 yk = N , after time slot

i, yk = 1, k = 1, . . . , N , which indicates that xk = 1 for all k and the throughput will always
be 100 percent. We will next prove that with any initial state Y0, in a finite number of time
slots M, where M is no more than N − 1, we will always have yk,M = 1, k = 1, . . . , N .

The state vector Y and its state transitions can be expressed as a game shown in
Figure 7.14. In the game, we have N balls placed in N boxes. In time slot i, there are
yk,i balls in the kth box, k = 1, . . . , N . We will show that no matter how many balls there
are in each box at the beginning, after at most N − 1 time slots, every box will always
contain exactly one ball.

The rule that determines the movement of the balls in the boxes is as follows:
In time slot i, if box k is occupied and has m balls, m > 0, then in time slot i + 1, one of

the m balls will stay in box k and the others, if any, will move to box k − 1. Since all the
balls are identical, without losing generality we will require that the ball that arrived at box
k earliest will stay in and occupy box k, and the others, if any, will move to box k − 1. If
more than one ball arrives at an empty box, one of them is picked arbitrarily to stay there.
Thus if a ball is put into an empty box, it stays there indefinitely.

Figure 7.14 shows an example of the movement of balls. In the figure, black balls are
those that occupy a box permanently and white balls keep moving until they find an empty
box and occupy it, at which point they turn black. We will prove that each of the N balls
will find a box to occupy permanently in no more than N − 1 time slots, so that every box
will always have one ball in it.

We will now show that the game corresponds to the state transitions of Yi as defined in
(7.5). By following the rules above, and by knowing how many balls there are in box k and
box k + 1 in time slot i ( yk,i and yk+1,i), we can get the number of balls in box k in time
slot i + 1 ( yk,i+1), which is identical with (7.5):

Condition 1. If in time slot i, box k is empty and box k + 1 has at most one ball, then in
time slot i + 1, box k is still empty.

Condition 2. If in time slot i, box k is empty and box k + 1 has j balls, j > 1, then in
time slot i + 1, one of these j balls stays in box k + 1 and box k will have the other
j − 1 balls.

Condition 3. If in time slot i, box k has j balls, j > 1, and box k + 1 has at most one
ball, then in time slot i + 1, no ball will move from box k + 1 to box k, and only one
ball (which permanently occupies box k) will stay in box k.

Condition 4. If in time slot i, there are m balls in box k and j balls in box k + 1, m > 1
and j > 1, then in time slot i + 1, one of the m balls (which permanently occupies box
k) stays in box k and others move to box k − 1, one of the j balls (which permanently
occupies box k + 1) stays in box k + 1 and j − 1 balls move to box k; box k will then
have j balls.
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Figure 7.14 States of the system in 8 time slots when N = 8 and with the initial state
Y0 = (0, 1, 0, 0, 1, 2, 4, 0).

In time slot 0, if a solitary ball occupies a box, it means that it has already found its final
box. What we need to show is that if a ball does not occupy a box in time slot 0, it will find
its box within N − 1 time slots.

Suppose in time slot 0, box k is occupied and there is a white ball (named ball B) in
it; then, in the next time slot, ball B must move to box k − 1. We will next use a proof
by contradiction. Assume that until time slot N − 1, ball B still cannot find its own box
to occupy; this means it has moved in every time slot and traveled N − 1 boxes, all of
which were occupied. Since box k is already occupied, all N boxes are occupied by N
balls. With ball B, there will be a total of N + 1 balls in the system, which is impossi-
ble. So the assumption is wrong and ball B will find a box to occupy within N − 1 time
slots.

Therefore, we conclude that any ball can find a box to occupy within N − 1 time slots, and
from time slot N − 1, each box has one ball in it. Thus Yi, yk,i = 1, k = 1, . . . , N , i ≥ N − 1,
for any Y0, which indicates that after time slot N − 1, each output arbiter pointer will point
to a different input, and will continue to do so indefinitely. This guarantees a throughput of
100 percent.
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7.3.4 FIRM

Similar to iRRM and iSLIP, FIRM [15] also implements the round-robin scheduler to update
input accept and output grant pointers. The only difference in this scheme lies in that the
output grant pointers update their positions to the one beyond the granted input port if the
grant is accepted in step 3, and update to the granted input port if the grant is not accepted
in step 3. The steps for one iteration of this scheme are as follows:

Step 1: Request. Each unmatched input sends a request to every output for which it has
a queued cell.

Step 2: Grant. If an unmatched output receives multiple requests, it chooses the one
that appears next in a fixed, round-robin schedule starting from the highest priority
element. The output notifies each input whether or not its request was granted. The
grant pointer gi is incremented (modulo N) to one location beyond the granted input
if the grant is accepted in step 3. It is placed to the granted input if the grant is not
accepted in step 3.

Step 3: Accept. If an input receives multiple grants, it accepts the one that appears next
in a fixed, round-robin schedule starting from the highest priority element. The pointer
aj is incremented (modulo N) to one location beyond the accepted output. The accept
pointers ai are only updated in the first iteration.

Compared to iSLIP, FIRM is fairer as it approximates first come first serve (FCFS)
closer to the improved update scheme of the output grant pointer. An example is shown in
Figures 7.15 and 7.16.

In the cycle 0 of the example given in Figure 7.15, input 2 has queued cells for outputs
2 and 4, while input 3 has queued cells for outputs 1 and 3. No cells are queued in inputs
1 and 4. Initially, all pointers aj and gi are set as shown in Figure 7.15a. In step 1, input 2
sends requests to outputs 2 and 4 while input 3 sends requests to outputs 1 and 3. In step 2,
the outputs grant the request that is closest to the pointed input by the grant pointer in the
clockwise direction. So, input 2 receives grants from outputs 2 and 4; and input 3 receives
grants from outputs 1 and 3. In step 3, the inputs accept the grant that is closest to the
pointed output by the accept pointer. Hence, input 2 accepts the grant from output 4 and
input 3 accepts the grant from output 3. As a result, a2 and a3 are updated and now point to
outputs 1 and 4, respectively, (a1 and a4 are not updated). However, in a manner different
from iSLIP, the grant pointers of outputs 3 and 4 are updated to inputs 4 and 3, respectively,
since their grants were accepted and those of outputs 1 and 2 are updated to inputs 3 and 2,
respectively, since their grants were not accepted. This completes cycle 0 of FIRM.

Figure 7.16 shows the situation at the beginning of cycle 1. New cells arrive from input
2 to output 1. Due to the difference in updating the output grant pointer in cycle 0, FIRM
will grant input 2 in output 2 and input 3 in output 1, the two granted cells are both old
cells that arrived in cycle 0. This example shows that FIRM is better in performing FCFS
of arriving cells and is fairer, compared to iSLIP and iRRM.

7.3.5 Dual Round-Robin Matching (DRRM)

The DRRM scheme [16, 17] works similar to iSLIP, using the round-robin selection instead
of random selection. But it starts the round-robin selection at inputs and only sends one
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Figure 7.15 Example of FIRM–cycle 0.
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Figure 7.16 Example of FIRM–cycle 1.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 244 — #20

244 INPUT-BUFFERED SWITCHES

request from each non-empty input port. An input arbiter is used to select a non-empty
VOQ according to the round-robin service discipline. After the selection, each input sends
a request, if any, to the destined output arbiter. An output arbiter receives up to N requests.
It chooses one of them based on the round-robin service discipline, and sends a grant to
the winner input port. Because of the two sets of independent round-robin arbiters, this
arbitration scheme is called dual round-robin matching (DRRM).

The dual round-robin matching (DRRM) has two steps in a cycle:

Step 1: Request. Each input sends an output request corresponding to the first nonempty
VOQ in a fixed round-robin order, starting from the current position of the pointer in
the input arbiter. The pointer remains unchanged if the selected output is not granted
in step 2. The pointer of the input arbiter is incremented by one location beyond the
selected output if and only if the request is granted in step 2.

Step 2: Grant. If an output receives one or more requests, it chooses the one that appears
next in a fixed round-robin scheduling starting from the current position of the pointer
in the output arbiter. The output notifies each requesting input whether or not its
request was granted. The pointer of the output arbiter is incremented to one location
beyond the granted input. If there are no requests, the pointer remains where it is.

Because each input sends at most one request and receives at most one grant in each
time slot, it is not necessary for input ports to conduct a third accept phase.

Figure 7.17 shows an example of the DRRM algorithm. In the request phase, each input
chooses a VOQ and sends a request to an output arbiter. Assume input 1 has cells destined
for both outputs 1 and 2. Since its round-robin pointer r1 is pointing to 1, input arbiter 1
sends a request to output 1 and finally updates its pointer to 2 when its grant is accepted
by output 1. Let us consider output 3 in the grant phase. Since its round-robin pointer g3 is

Figure 7.17 Example of DRRM scheduling algorithm.
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Figure 7.18 Desynchronization effect of DRRM under the fully loaded situation.

pointing to 3, output arbiter 3 grants input 3 and updates its pointer to 4. Similar to iSLIP,
DRRM also has the desynchronization effect. The input arbiters granted in different time
slots have different pointer values, and each of them requests a different output, resulting in
desynchronization. However, the DRRM scheme requires less time to perform arbitration
and is easier to implement. This is because less information exchange is needed between
input arbiters and output arbiters. In other words, DRRM saves initial transmission time
required to send requests from inputs to outputs in iSLIP.

Consider the fully loaded situation in which every VOQ always has cells. Figure 7.18
shows the HOL cells chosen from each input port in different time slots. In time slot 1, each
input port chooses a cell destined for output A. Among those three cells, only one (the first
one in this example) is granted and the other two have to wait at the HOL. The round-robin
pointer of the first input advances to point to output B in time slot 2, and a cell destined for
B is chosen and then granted because there are no contenders. The other two inputs have
their HOL cells unchanged, both destined for output A. Only one of them (the one from the
second input) is granted and the other has to wait until the third time slot. At that time, the
round-robin pointers among the three inputs have been desynchronized and point to C, B,
and A, respectively. As a result, all three cells chosen are granted.

Figure 7.19 shows the tail probability under FIFO+RR (FIFO for input selection and RR
for round-robin arbitration), DRRM, and iSLIP arbitration schemes. The switch size is 256
and the average burst length is 10 cell slots (with the ON–OFF model). The performances
of DRRM and iSLIP are comparable at speedup of 2, while all three schemes have almost
the same performance as speedup s ≥ 3.

7.3.6 Pipelined Maximal Matching

Maximal matching is widely adopted in the scheduling of input buffered switches, either
with one cycle matching or multiple iterative matching. However, the computing complexity
of maximal matching is, too high to complete within a single time slot when the switch size
increases or the line rate becomes high.

In the work of Oki et al. [18], a scheduling algorithm called pipelined maximal matching
(PMM) based on pipeline was proposed to resolve the problem. The PMM scheme relaxes
the computation time for maximal matching to more than one time slot. As shown in
Figure 7.20, the PMM scheduler consists of N2 request counters (RC) and K subschedulers.
Each subscheduler has N2 request subcounters (RSC). As shown in Figure 7.21, each
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Figure 7.19 Comparison on tail probability of input delay under three arbitration schemes.

subscheduler operates the maximal matching in a pipelined manner and takes K time slots
to complete the matching. After each time slot, one of the K subschedulers finishes a
matching, which is used in the next time slot. DRRM is implemented in the subscheduler to
achieve a maximal matching. Since K time slots are provided for one scheduling, multiple
iterative DRRM (iDRRM) can be adopted.

Before a detailed description of PMM, several notations are first defined: RC(i, j) denotes
the request counter associated with VOQ(i, j). C(i, j) keeps the value of RC(i, j), which is
the number of accumulated requests associated with VOQ(i, j) that have not been sent to
any subscheduler. RSC(i, j, k) denotes the request subcounter in the kth subscheduler that
is associated with VOQ(i, j), and SC(i, j, k) keeps its value. The SC(i, j, k) is the number of
remaining requests that are dispatched from RC(i, j) and not transferred yet. Each SC(i, j, k)

is limited to SCmax . It is found that when SCmax = 1, the delay performance is best. At initial
time, each C(i, j) and SC(i, j, k) are set to zero. PMM operates as follows.

Phase 1. When a new cell enters VOQ(i, j), the counter value of RC(i, j) is increased
as C(i, j) = C(i, j) + 1.

Phase 2. At the beginning of every time slot t, if C(i, j) > 0 and SC(i, j, k) < SCmax,
where k = t mod K , then C(i, j) = C(i, j) − 1 and SC(i, j, k) = SC(i, j, k) + 1.
Otherwise, C(i, j) and SC(i, j, k) are not changed.

Phase 3. At Kl + k ≤ t < K(l + 1) + k, where l is an integer, subscheduler k operates
the maximal matching according to the adopted algorithm.
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Figure 7.20 Structure of the PMM scheduler.

Phase 4. By the end of every time slot t, subscheduler k, where k = (t − (K − 1))

mod K , completes the matching. When input–output pair (i, j) is matched,
SC(i, j, k) = SC(i, j, k) − 1. The HOL cell in VOQ(i, j) is sent to output j at the next
time slot. This ensures that cells from the same VOQ are transmitted in sequence,
since only the HOL cell of each VOQ can be transferred when any request is granted.

Since the scheduling timing constraint has been relaxed, each subscheduler is now
allowed to take several time slots to complete a maximal matching. By implementing
the iterative DRRM, PMM can approximate the performance of iDRRM, providing 100
percent throughput under uniform traffic and fairness for best-effort traffic. Besides, cell
order of the same VOQ is preserved.

Apart from PMM, other algorithms based on pipeline have been proposed, such as the
Round-Robin Greedy Scheduling (RRGS) [19], but PMM is better in providing fairness
and scalability.

Figure 7.21 Timing diagram of PMM with three subscheduler.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 248 — #24

248 INPUT-BUFFERED SWITCHES

7.3.7 Exhaustive Dual Round-Robin Matching (EDRRM)

In most scheduling algorithms, inputs and outputs are matched in each time slot. This is
similar to the limited service policy with a limit of 1 [20] in a polling system. In order to
improve the performance under non-uniform and burst traffic, some improved scheduling
methods modify the limit-1 service policy to the limit-∞ policy so that whenever an input is
matched to an output, all cells in the corresponding VOQ will be transferred in the following
time slots before any otherVOQ at the same input can be served. This is called the exhaustive
service policy [20] in polling systems.

Combining the exhaustive service policy with DRRM, the exhaustive DRRM (EDRRM)
[21] was proposed. In EDRRM, the input pointer is not updated until the current VOQ is
exhausted. Besides the exhaustive scheduling, EDRRM has two other differences compared
to DRRM. First, the pointer in the output arbiter always points to the latest matched input
and does not update its location after a service because the output has no idea if the currently
served VOQ will become empty after this service. Second, in EDRRM, if an input sends a
request to an output but gets no grant, the input will update its pointer of input arbiter to the
next location beyond the requested output, while in DRRM, this pointer will remain where
it is until it gets a grant. The reason for this is because in EDRRM, if an input cannot get
a grant from an output, it means that the output is most likely being matched with another
input for all the cells waiting in the same VOQ. Therefore, it is better to update the pointer
of input arbiter to search for another free output, rather than to wait for this busy one. The
detailed description of EDRRM is shown below.

Step 1: Request. Each input moves its pointer to the first nonempty VOQ in a fixed
round-robin order, starting from the current position of the pointer in the input arbiter,
and sends a request to the output corresponding to this VOQ. The pointer of the input
arbiter is incremented by one location beyond the selected output if the request is not
granted in step 2, or if the request is granted and after one cell is served, this VOQ
becomes empty. Otherwise, if there are remaining cells in this VOQ after sending one
cell, the pointer remains at this nonempty VOQ.

Step 2: Grant. If an output receives one or more requests, it chooses the one that appears
next in a fixed round-robin scheduling starting from the current position of the pointer
in the output arbiter. The pointer is moved to this position. The output notifies each
requesting input whether or not its request was granted. The pointer of the output
arbiter remains at the granted input. If there are no requests, the pointer remains
where it is.

Figure 7.22 shows an example of the EDRRM arbitration algorithm, where r1, r2, r3,
and r4 are arbiter pointers for inputs 1, 2, 3, and 4, and g1, g2, g3, and g4 are arbiter pointers
for outputs 1, 2, 3, and 4. At the beginning of the time slot, r1 points to output 1 while g1
does not point to input 1, which means that in the last time slot, input 1 was not matched to
output 1, and now input 1 requests output 1 for a new service. Similarly, r2 requests output
3 for a new service. Since r3 points to output 3 and g3 points to input 3, it is possible that in
the last time slot input 3 was matched to output 3 and in this time slot output 3 will transfer
the next cell from input 3 because the VOQ is not empty. Input 4 and output 2 have a similar
situation as input 3 and output 3. In the grant phase, output 1 grants the only request it
receives from input 1 and updates g1 to 1, output 2 grants a request from input 4 and output
3 grants a request from input 3. The request from input 2 to output 3 is not granted, so r2
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Figure 7.22 Example of EDRRM scheduling algorithm.

moves to 4. By the end of this time slot, the first VOQ of input 1 and the third VOQ of input
3 are still nonempty so that r1 and r3 are not updated. r4 is updated to 3 because the second
VOQ of input 4 has become empty.

7.4 RANDOMIZED MATCHING ALGORITHMS

Determining the maximum weight matching essentially involves a search procedure, which
can take many iterations and be time-consuming. Since the goal is to design high-
performance schedulers for high aggregate bandwidth switches, algorithms that involve,
too many iterations are unattractive [22].

In this section, we will introduce several randomized matching algorithms using memory
or arrivals. The usage of memory and arrivals are based on two observations:

Using memory. In each time slot, there can be at most one cell that arrives at each input,
and at most one cell that departs from each input. Therefore, the queue length of each
VOQ does not change much during successive time slots. If we use the queue length
as the weight of a connection, it is quite possible that a heavy connection will continue
to be heavy over a few time slots. With this observation, matching algorithms with
memory use the match (or part of the match) in the previous time slot as a candidate
of the new match.

Using arrivals. Since the increase of the queue length is based on the arrivals, it might
be helpful to use the knowledge of recent arrivals in finding a match.

Since the decision is not based upon the complete knowledge of a large state space, but
upon a few random samples of the state, the decision process can be significantly simplified.
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By using a randomized matching algorithm, we may not find “the best” match, but the match
could be good enough to make the switch stable.

7.4.1 Randomized Algorithm with Memory

The randomized algorithm with memory presented by Tassiulas [23] is a very simple match-
ing scheme that achieves 100 percent throughput. The disadvantage of this algorithm is its
high average delay.

At time t, let Q(t) = [qij]N×N , where qij is the queue length of VOQij. The weight
of a match M(t), which is the sum of the lengths of all matched VOQs, is denoted by
W(t) = 〈M(t), Q(t)〉.

Randomized Algorithm with Memory

1. Let S(t) be the schedule used at time t.

2. At time t + 1, uniformly select a match R(t + 1) at random from the set of all N !
possible matches.

3. Let

S(t + 1) = arg max
S∈{S(t),R(t+1)}〈S, Q(t + 1)〉. (7.6)

The function of arg selects the S that makes 〈S, Q(t + 1)〉 achieve its maximum in the
above equation.

Theorem 4: The randomized algorithm with memory is stable under any Bernoulli i.i.d.
admissible arrival traffic [23].

7.4.2 De-randomized Algorithm with Memory

In [21], a matching algorithm was presented to de-randomize the randomized algorithm
with memory by using Hamiltonian walk.

A Hamiltonian walk is a walk which visits every vertex of a graph exactly once. For a
N × N switch, the total number of possible matches is N !. If those matches are mapped on
to a graph with N ! vertices so that each vertex corresponds to a match, a Hamiltonian walk
on the graph visits each vertex exactly once every N ! time slots. The vertex that is visited at
time t is denoted by H(t). The complexity of generating H(t + 1) from H(t) is O(1) [24].

De-randomized Algorithm with Memory

1. Let S(t) be the match used at time t.

2. At time t + 1, let R(t + 1) = H(t), the match visited by the Hamiltonian walk.

3. Let

S(t + 1) = arg max
S∈{S(t),R(t+1)}〈S, Q(t + 1)〉. (7.7)
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Theorem 5: An input-queued switch using the de-randomized algorithm with memory is
stable under all admissible Bernoulli i.i.d. input traffic [22].

7.4.3 Variant Randomize Matching Algorithms

The fact that matching algorithms with simple ideas, such as randomized and de-randomized
algorithms with memory, achieve 100 percent throughput as MWM does shows an important
insight. That is, to achieve 100 percent throughput, it is not necessary to find “the best”
match in each time slot. However, “better” matches do lead to better delay performance.
Simulation results show that the randomized and de-randomized algorithms with memory
have very high delay. In order to improve the delay performance, extra work is needed to
find “better” matches. In [22], three algorithms with much better delay performance and
higher complexity were proved to be stable.

APSARA. The APSARA algorithm [25] employs the following two ideas:

1. Use of memory.

2. Exploring neighbors in parallel. The neighbors are defined so that it is easy to compute
them using hardware parallelism.

In APSARA, the “neighbors” of the current match are considered as candidates of the
match in the next time slot. A match S′ is defined as a neighbor of a match S if, and
only if, there are two input–output pairs in S, say input i1 to output j1 and input i2 to
output j2, switching their connections so that in S′ input i1 connects to output j2 and i2
connects to output j1. All other input–output pairs are the same under S and S′. We denote
the set of all the neighbors of a match S as N(S). As shown in Figure 7.23 [22], the
matching S for a 3 × 3 switch and its three neighbors S1, S2, and S3 are given below:
S = (1, 2, 3), S1 = (2, 1, 3), S2 = (1, 3, 2), and S3 = (3, 2, 1).

Let S(t) be the matching determined by APSARA at time t. Let H(t + 1) be the
match corresponding to the Hamiltonian walk at time t + 1. At time t + 1, APSARA does

Figure 7.23 Example of neighbors in APSARA algorithms.
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the following:

1. Determine N(S(t)) and H(t).

2. Let M(t + 1) = N(S(t)) ∪ H(t + 1) ∪ S(t). Compute the weight 〈S′, Q(t + 1)〉 for
all S′ ∈ M(t + 1).

3. Determine the match at t + 1 by

S(t + 1) = arg max
S′∈M(t+1)

〈S′, Q(t + 1)〉. (7.8)

APSARA requires the computation of the weight of neighbors. Each such computation
is easy to implement. However, computing the weights of all (N

2 ) neighbors requires a lot of
space in hardware for large values of N . To overcome this, two variations were considered
in the work of Giaccone et al. [22] by reducing the number of neighbors considered in each
time slot.

LAURA. There are three main features in the design of LAURA [25]:

1. Use of memory.

2. Nonuniform random sampling.

3. A merging procedure for weight augmentation.

Most of a matching’s weight is typically contained in a few edges. Thus, it is more
important to choose edges at random than it is to choose matchings at random. Equally, it
is more important to remember the few good edges of the matching at time t for use in time
t + 1 than it is to remember the entire matching at time t [26].

The randomized and de-randomized algorithms with memory provide poor delay per-
formance because they carry matches between time slots via memory. When the weight of
a heavy match resides in a few heavy edges, it is more important to remember the heavy
edges rather than the whole match. This observation motivates LAURA, which iteratively
augments the weight of the current match by combining its heavy edges with the heavy
edges of a randomly chosen match.

Let S(t) be the match used by LAURA at time t. At time t + 1 LAURA does the following:

1. Generate a random match R(t + 1) based on the procedure in [22].

2. Use S(t + 1) = MERGE(R(t + 1), S(t)) as the schedule for time t + 1.

The MERGE Procedure. Given a bipartite graph and two matches M1 and M2 for this
graph, the MERGE procedure returns a match M whose edges belong either, to M1 or to
M2. MERGE works as follows and an example is shown in Figure 7.24.

Color the edges of M1 red and M2 green. Start at output node j1 and follow the red edge
to an input node, say i1. From input node i1 follow the (only) green edge to its output node,
say j2. If j2 = j1, stop. Otherwise, continue to trace a path of alternating red and green edges
until j1 is visited again. This gives a “cycle” in the subgraph of red and green edges.

Suppose the above cycle does not cover all the red and green edges. Then there exists
an output j outside this cycle. Starting from j, repeat the above procedure to find another
cycle. In this fashion, find all cycles of red and green edges. Suppose there are m cycles,
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Figure 7.24 Example of the MERGE procedure.
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C1, . . . , Cm at the end. Then each cycle, Ci, contains two matches: Gi with green edges and
Ri with red edges. The MERGE procedure returns the match

M = ∪m
i=1 arg max

S∈{Gi ,Ri}
〈S, Q(t)〉. (7.9)

The complexity of the MERGE procedure is O(N).

SERENA. SERENA is a variant of LAURA that uses packet arrival times as a source
of randomness. The basic version of LAURA merges the past schedule with a randomly
generated matching. In contrast, SERENA considers the edges that received arrivals in
the previous time slot and merges them with the past matching to obtain a higher-weight
matching [26].

SERENA [25] is based on the following ideas:

1. Use of memory.

2. Exploiting the randomness of arrivals.

3. A merging procedure, involving new arrivals.

In SERENA, in order to provide information about recent traffic load, arrival patterns
are used to generate a new match.

Let S(t) be the match used by SERENA at time t. Let A(t + 1) = [Aij(t + 1)] denote the
arrival graph, where Aij(t + 1) = 1 indicates arrival at input i destined to output j. At time
t + 1:

1. Turn A(t + 1) into a full match.

2. Use S(t + 1) = MERGE(S(t), A(t + 1)) as the schedule.

In the second step, the MERGE procedure combines two full matches (with N connec-
tions each) into a new match. However, it is possible that A(t + 1) is not a match when
more than one input has arrivals destined to one output. Therefore, it is necessary to convert
A(t + 1) into a match in the first step as follows. If an output has more than one arrival edge,
pick the edge with the highest weight and discard the remaining edges. At the end of this
process, each output is matched with at most one input. After that, if A(t + 1) is not a full
match, simply connect the remaining input–output pairs by adding edges in a round-robin
fashion, without considering their weights.

The complexity of SERENA is O(N). In the work of Giaccone et al. [22], the authors
preferred SERENA against APSARA and LAURA because of its good performance and
low implementation complexity.

7.4.4 Polling Based Matching Algorithms

A polling model [20] is a system of multiple queues accessed in a cyclic order by a single
server. A polling system can have different service disciplines, such as the exhaustive service
and the limited service. When the server switches to a queue, it serves some customers with
a limited service discipline, while it serves all other customers with an exhaustive service
discipline. Usually, the exhaustive service discipline is more efficient than other service
disciplines.
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Exhaustive service match with Hamiltonian walk (EMHW), presented in the work of
Li [14] and Li et al. [27], is a class of matching algorithms inspired by exhaustive service
polling systems. In an exhaustive service matching algorithm, when an input is matched to
an output, all the packets waiting in the corresponding VOQ will be served continuously
before any other VOQ related to the input and the output can be served. EMHW achieves
stability and low packet delay with low implementation complexity.

EMHW is defined as follows:

1. Let S(t) be the schedule used at time t.

2. At time t + 1, generate a match Z(t + 1) by means of the exhaustive service matching
algorithm, based on the previous schedule S(t), and H(t + 1), the match visited by a
Hamiltonian walk.

3. Let

S(t + 1) = arg max
S∈{Z(t+1),H(t+1)}〈S, Q(t + 1)〉. (7.10)

Theorem 6. An EMHW is stable under any admissible Bernoulli i.i.d. input traffic
[14, 27].

The stability of EMHW is achieved due to two efforts. Unlike most other matching
algorithms, which try to find efficient matches in each time slot, exhaustive service matching
achieves efficiency by minimizing the matching overhead over multiple time slots. Cells
forwarded to outputs are held in reassembly buffers that can only leave the switch when
all cells belonging to the same packet are received so that the packet is reassembled. The
total delay a packet suffers, from the time it arrives at the input to the time it departs at
the output, includes the cell delay incurred traversing the switch and the time needed for
packet reassembly. In exhaustive service matching, since all the cells belonging to the same
packet are transferred to the output continuously, the packet delay is significantly reduced.
The stability of EMHW is guaranteed by introducing matches generated by a Hamiltonian
walk. This lower bounds the weight of matches, hence guaranteeing stability.

HE-iSLIP. Exhaustive schemes can be used in conjunction with existing matching algo-
rithms, such as iSLIP. The time complexity of exhaustive service iSLIP with Hamiltonian
walk (HE-iSLIP), which belongs to the class of stable algorithm EMHW, is as low
as O(log N). Simulation results show that HE-iSLIP achieves very good packet delay
performance.

In EMHW, an input (output) is busy if it is matched to an output (input), otherwise it
is free. For exhaustive service iSLIP (E-iSLIP), at the beginning of each time slot, each
input (output), which was busy (i.e., matched) in the previous time slot, checks its state
by checking the corresponding VOQ. If the VOQ has just been emptied, the input (output)
changes its state to free and increments its pointer to one location beyond the matched
output (input). Otherwise, the input (output) keeps its state as busy and does not update its
pointer. A detailed description of the three step E-iSLIP algorithm follows:

Step 1: Request. Each free input sends a request to every output for which it has a
queued cell. Each busy input sends a request to the matched output.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 256 — #32

256 INPUT-BUFFERED SWITCHES

Step 2: Grant. If an output (either free or busy) receives any requests, it chooses one
of them in a fixed round-robin order starting from the current position of the pointer.
The output notifies each input whether or not its request was granted. Note that the
output pointer points to the granted input if the grant is accepted in Step 3.

Step 3: Accept. If an input receives any grant, it sets its state to busy, and accepts one
of the multiple grants in a fixed round-robin order starting from the current position
of the pointer. The input pointer then points to the matched output.

In E-iSLIP, free outputs only get requests from free inputs, and free inputs only get grants
from free outputs.

Figure 7.25 shows an example of E-iSLIP in a time slot. By the end of the last time slot,
input 1 is matched to output 2, and input 4 is matched to output 1. At the beginning of the
current time slot, none of their corresponding VOQs was empty, and the other inputs and
outputs were free. Therefore, input 1 and input 4 only send one request each, to output 2 and
output 4, respectively. Input 2 and input 3 send requests for non-empty VOQs, to outputs
1 and 3, and outputs 3 and 4, respectively. Outputs 1 and 2 grant inputs to which they are
matched, and inputs 1 and 4 accept their grants. Output 3 gets two requests. It grants input
3 according to the status of its round robin pointer (not shown). Output 4 only gets one
request from input 3, and it grants the request. Input 3 receives two grants, and it accepts
output 3 according to the status of its round robin pointer (again, not shown). Input 3 and
output 3 are matched and change their state to busy. At the beginning of the next time slot,
if input 1 does not have a new arrival to output 2, the corresponding VOQ will be empty
and input 1 and output 2 will set their states to free.

HE-iSLIP does the following in each time slot t + 1:

1. Run E-iSLIP, which generates a match Z(t + 1) based on the previous match S(t)
and updates the pointer and the state of each input and output.

2. Generate a match H(t + 1) by Hamiltonian walk.

Figure 7.25 Example of E-iSLIP algorithm.
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3. Compare the weights of Z(t + 1) and H(t + 1). If the weight of H(t + 1) is larger,
set S(t + 1) = H(t + 1). For each matched input (output), set its state to busy, and
update its pointer to the output (input) with which it is matched. Unmatched inputs
and outputs set their states to free and do not update their pointers. If the weight of
Z(t + 1) is larger, simply set S(t + 1) = Z(t + 1). No further pointer or state updating
is needed since it has been done in the first step.

Cell Delay Performance Analysis. The cell delay performance of E-iSLIP under
uniform traffic can be analyzed by using an exhaustive random polling system model [28].
The expression of the average cell delay E(T) is as follows:

E(T) = 1

2

[
δ2

r
+ σ 2

(1 − Nµ)µ
+ Nr(1 − µ)

1 − Nµ
+ (N − 1)r

1 − Nµ

]
(7.11)

where µ is the arrival rate for a VOQ, σ 2 is the variance of the arrival process for a VOQ,
and r = E(S), δ2 = E(S2) − E2(S). Here S is the switch-over time, the time taken for the
server to switch from one VOQ after service completion to another VOQ for a new service
period. The expressions of E(S) and E(S2) are as below. The details can be found in the
work of Li [14] and Li et al. [29].

E(S) =
∞∑

n=1

n(1 − QS)
nQS = 1 − QS

QS
. (7.12)

and

E(S2) =
∞∑

n=1

n2(1 − QS)
nQS = 1 − QS

QS

[
2(1 − QS)

QS
+ 1

]
, (7.13)

where

QS =
N∑

m=1

(
N − 1
m − 1

)
ρN−m(1 − ρ)m−1[1 − (1 − ρ)m]

m−1∑
i=0

(
m − 1

i

)
(1 − w)m−i−1wi 1

i + 1

= 1 −
N∑

m=1

(
N − 1
m − 1

)
ρN−m(1 − ρ)m−1(1 − w)m (7.14)

and

w = 1

m

[
1 − (1 − ρ)m] . (7.15)

When N is large,

E(T) → E(S)
N

1 − ρ
. (7.16)

Numerical results show that for all ρ < 1, the average switch-over time, E(S), is around
0.58 time slots when N is large. Therefore, for a fixed ρ, E(T) is linear in N when N is
large.
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7.4.5 Simulated Performance

In this section, we will show some simulation results under uniform and nonuniform arrival
traffic for the delay performance of a 32 by 32 VOQ switch with benchmark stable algo-
rithms, MWM, iSLIP, the de-randomized matching algorithm, SERENA and HE-iSLIP with
implementation complexity O(N3), O(log N), O(log N), O(N) and O(log N), respectively.

In fixed-length switches, variable-length IP packets are segmented into fixed-length cells
at the inputs, and the cells are placed in the corresponding VOQ. When a cell is transferred
to its destination output, it will stay in a buffer and wait for the other cells of the same
packet. After the complete reception of all the cells of the same packet, these cells will
be reassembled into a packet. The delay a packet suffers before it is reassembled into
a packet and delivered to its destination includes the cell delay, and the waiting time at
the output reassembly buffer, which is often ignored by many researchers. For a more
realistic evaluation of switch performance, we consider the following average delays in our
simulation.

Cell delay. The delay a cell suffers from the time it enters the system to the time it is
transferred from the input to its destined output.

Reassembly delay. The delay a cell suffers from the time it is transferred to it destined
output to the time it is reassembled and departs the system.

Packet delay. As in [30], the packet delay of a packet is measured from the time when
the last cell of a packet enters the system to the time it departs.

Under Uniform Traffic. Three different packet patterns are considered in this section, as
follows:

Pattern 1. The packet length is fixed with a size of 1 cell. This also allows for comparison
with the cell delay used in many papers.

Pattern 2. The packet length is fixed with a size of 10 cells.

Pattern 3. Based on the Internet traffic measurements by Claffy et al. [31], where 60
percent of the packets are 44 bytes, 20 percent are 552 bytes, and the rest are 1500
bytes. In the simulation, the packet size distribution is defined as follows: the size of
60 percent of the packets is 1 cell, the size of 20 percent of the packets is 13 cells,
and the size of other 20 percent packets is 34 cells. This assumes a cell payload of 44
bytes. The average packet size is 10 cells.

Simulation results under packet patterns 1, 2, and 3 are shown in Figures 7.26, 7.27, and
7.28, respectively.

The packet delay of the de-randomized matching algorithm is always much higher than
10,000 cell time slots and are therefore not shown in the figures. We can see that under
uniform traffic, the packet delay of HE-iSLIP is always lower than iSLIP and SERENA. In
the figures, SERENA has the highest packet delay when the traffic load is low to moderately
high. Under heavy load, iSLIP has the highest packet delay. MWM has a higher packet
delay than HE-iSLIP for packet patterns 2 and 3.

As shown in Figure 7.26, MWM has the lowest delay when the packet size is 1 cell,
but has higher packet delay than HE-iSLIP when the average packet size is >1, as shown
in Figures 7.27 and 7.28. Figures 7.29 and 7.30 explain why this happens. The cell delay
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Figure 7.26 Average packet delay of iSLIP, SERENA, HE-iSLIP and MWM under uniform
traffic when the packet length is 1 cell.

of MWM is always lower than HE-iSLIP, but its reassembly delay is much higher. In HE-
iSLIP, the cells in the same packet are usually transferred continuously. The only exception
is when the match generated by Hamiltonian walk is picked because of its larger weight.
However, this does not happen very often. Therefore, the reassembly delay of HE-iSLIP is
always close to half of the packet length.

Figure 7.27 Average packet delay of iSLIP, SERENA, HE-iSLIP and MWM under uniform traffic
when the packet length is 10 cells.
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Figure 7.28 Average packet delay of iSLIP, SERENA, HE-iSLIP and MWM under uniform traffic
with variable packet length.

Performance Under Nonuniform Traffic. Two typical nonuniform traffic patterns,
diagonal and hotspot, are considered in this section. The packet length is assumed to be 1
cell in the simulation. iSLIP is not included in the performance comparison since it is not
stable under nonuniform traffic.

Figure 7.29 Average cell delay of HE-iSLIP and MWM under uniform traffic when the packet
length is 10 cells.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 261 — #37

7.4 RANDOMIZED MATCHING ALGORITHMS 261

Figure 7.30 Average reassembly delay of HE-iSLIP and MWM under uniform traffic with variable
packet length.

With the diagonal traffic pattern [21, 30], the arrival rate for each input is the same. For
input i a fraction f of arrivals are destined to output i, and other arrivals are destined to
output (i + 1) mod N .

Table 7.1 shows the average delays, under diagonal traffic, of the de-randomized match-
ing algorithms, SERENA, HE-iSLIP and MWM, respectively. The arrival rate to each input
is 0.85. MWM has the best delay performance under diagonal traffic. The delay of SERENA
is lower than HE-iSLIP when f is large and similar to HE-iSLIP when f is small. The delay
of the de-randomized matching algorithm is much higher than those of other schemes.

In the hotspot traffic pattern, the arrival rate for each input is identical. For input i, a
fraction p, 1/N ≤ p < 1, of arrivals are destined to output i, and other arrivals are uniformly
destined to other outputs [21, 29]. Figure 7.31 shows the average delay of HE-iSLIP and
SERENA for a 32 × 32 switch for different values of p when the arrival rate is 0.95 and the
packet size is 1 cell. The delay for the de-randomized algorithm with memory is, too high
and therefore not shown in the figure. The simulation results show that HE-iSLIP always
has a lower delay than SERENA, but higher delay than MWM.

Compared to HE-iSLIP, the delay of SERENA is lower under diagonal traffic but higher
under the hotspot traffic pattern. This can be explained by the fact that SERENA takes

TABLE 7.1 Average Delay of a 32 × 32 Switch Under Diagonal Traffic Pattern

f 0.1 0.2 0.3 0.4 0.5

De-randomized 1164 425.4 532.1 369.2 371.9
SERENA 3.945 6.606 8.570 9.517 10.08
HE-iSLIP 3.167 8.502 30.54 56.22 86.13
MWM 1.848 2.532 3.115 3.337 3.440
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Figure 7.31 Average packet delay of SERENA, HE-iSLIP and MWM under the hotspot traffic
pattern.

the arrival pattern at each time slot into account to generate the new match. However, if
there is more than one arrival destined to the same output, only one of them, which is
randomly selected, can be considered. Under diagonal traffic, only two inputs can have
traffic to a given output. This makes it relatively easy for a new match to adapt to the
arrival pattern. Indeed, SERENA is particularly suitable for a traffic pattern with which
each output is always fed by only a few inputs. When traffic pattern is such that many
inputs feed a given output, the SERENA algorithm is less effective, as in the hotspot or
uniform traffic pattern case, since arrivals in a given slot give less indication of a good
match.

7.5 FRAME-BASED MATCHING

By taking advantage of the tremendous transmission and switching capacity of optical fibers,
many researchers have explored the possibility of building optical switching fabrics while
packet processing and storage are still handed by electronics. As compared to electronic
switch fabrics, a pair of E/O & O/E converters can be saved in optical switch fabrics, thus
reducing the system cost.

Packet scheduling in optical switch fabrics is quite different from that in electronic
switch fabrics as shown in Figure 7.32. In an electronic switch fabric, the switch fab-
ric is reconfigured without any delay. Cells can be transferred back-to-back, and packet
scheduling has to be completed before the switch configuration. But in an optical switch
fabric, the switch reconfiguration is much slower, and is not negligible. During the switch
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Figure 7.32 Comparison of operations between an electronic and optical switch fabric.

fabric reconfiguration, no data can be transferred. These reconfiguration overheads range
from milliseconds for bubble and free-space MEMS (Microelectromechanical Systems)
switches, to 10 µs for MEMS wavelength switches, and 10 ns for opto-electronic switch
techniques [32].

Taking into account the non-zero reconfiguration overheads, a different framework for
packet scheduling in optical switches has been studied. Instead of scheduling at every
time slot, multiple cells are merged together to form a large frame and scheduled and
switched as a group, so as to reduce the switching overhead. This type of scheduling
algorithms is called frame-based matching algorithms. The following questions are then
raised: How many cells should we schedule and switch together? How can we schedule full
frames and partially filled frames? What is the performance difference between traditional
algorithms and frame-based matching algorithms? Frame-based matching has the following
advantages:

1. Low overhead. For a 40 Gbps interface, a typical cell size (64 byte) only lasts 12.8 ns.
If the reconfiguration overhead is 20 ns, the switch utilization is only about 40 percent.
But if 100 cells form a frame and are switched together, the switch utilization is
improved to 98 percent.

2. The time required for scheduling frames is much more relaxed and more complex but
higher performance scheduling algorithms can be explored in frame-based matching.
With the above example, the scheduling time can be extended from 12.8 ns to 128 ns.

Research on frame-based matching is also important for electronic switch fabrics. As the
line speed increases from 10 Gbps to 40 Gbps to 100 Gbps or more, the cell slot becomes
smaller and smaller, and frame-based matching can be used to eliminate the constraints
with the price of a larger delay.

In the following, we introduce some work related to frame-based matching including
reducing the reconfiguration frequency, fixed-size frame-based matching, and asynchronous
variable-size frame-based matching.

7.5.1 Reducing the Reconfiguration Frequency

The objective of frame-based matching is to lower the bandwidth waste by reducing the
reconfiguration frequency. The algorithms presented in [32] can exactly emulate an uncon-
strained (zero overhead) switch in a switch with reconfiguration overhead, such as an
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optical switch. That is, any scheduling algorithms designed for an unconstrained switch
can be exactly emulated in an optical switch fabric. The emulation is executed in the fol-
lowing steps. First, in an unconstrained switch, acknowledged requests within T time slots
are accumulated. Second, in the switch with reconfiguration overhead, an algorithm is exe-
cuted, and a set of Ns switch schedules are generated to acknowledge the same batch of
requests. Finally, at each output port, packets are reordered to exactly emulate the same
departure process in the unconstrained switch.

For instance, suppose T = 5 in a 2 × 2 switch and the unconstrained switch fabric
configurations in consecutive T time slots are

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
and

[
1 0
0 1

]
.

In another way, we can keep the switch fabric configuration

[
1 0
0 1

]

for three time slots, and then

[
0 1
1 0

]

for two time slots. The two types of configuration can transfer the same cells over the five
time slots from inputs to corresponding outputs, but the second type only requires one
reconfiguration of the switch fabric. Obviously, in a 2 × 2 switch, some combinations of
the two basic switch configurations[

1 0
0 1

]
and

[
0 1
1 0

]

can achieve the same scheduling results for any given T . Then what is the minimum Ns in
a N × N switch?

Exact Covering. The problem of emulation is identical to the “cover” problem in math.
Cover: Matrix A is covered by a set of switch configurations P(1), . . . , P(Ns) and

corresponding weights φ(1), . . . , φ(Ns) if

Ns∑
k=1

φ(k)pi, j(k) ≥ ai, j, ∀i, j ∈ {1, . . . , N},

where ai, j and pi, j(k) are elements of matrix A and P(k), respectively, and φ(k) is the weight
of a switch configuration matrix P(k). P(k) is a N × N permutation matrix, which means
each element of P(k) is, either 0 or 1, and there is only one 1 in each row and each column.

In the case of equality for all i and j, the switch configurations exactly cover A.
For a given N × N switch fabric, if all the requests are cumulated to form a matrix C(T),

where C(T) is a matrix whose rows and columns sum to T . The number of necessary and
sufficient switch configurations Ns that can exactly cover any C(T) is N2 − 2N + 2.
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Figure 7.33 Example of exact covering {T = 7}.

Figure 7.33 shows an example of exact covering with T = 7. The matrix C is exactly
covered with four switch configurations. The switch configuration


1 0 0

0 0 1
0 1 0




is kept for four time slots and others are one time slot.
Complex algorithms that achieve an exact covering are typical and can be found in the

work of Inukai [33] and Chang et al. [34]. They perform O(N2) maximum size matchings,
and the complexity of each maximum size matching is O(N2.5), so the complexity of exact
covering is O(N4.5).

In the exact covering, there are no empty time slots during transferring cells. Thus the
required speedup to compensate for empty slots speedup Smin = 1, and the total speedup
of the switch fabric S = T/[T − δ(N2 − 2N + 2)], where δ is the switch reconfiguration
overhead in time slots.

Minimum Switching. Exact covering provides a bound where Smin = 1, but O(N2)

switch configurations are needed. Whereas, the minimum switching configurations that
can cover any arbitrary matrix C is N . These N permutation matrixes do not have any 1s in
the same row and the same column.

Obviously, if none of the elements of C is zero, any switching configurations that are
less than N cannot cover C. For example, the matrix

[
2 2
2 2

]

cannot be covered with less than two different switch configurations.
For the same matrix shown in Figure 7.33, it can be covered with three configurations as

shown in Figure 7.34. These switch configurations do not exactly cover matrix C, and there
are empty time slots, so the speedup is required to compensate these empty time slots. To
transmit a general cumulative schedule matrix C(T) in N switch configurations, Smin must
be at least �(log N) for T > N . At the same time, to cover a general cumulative schedule
matrix C(T) with N switch configurations, Smin = 4T(4 + log2 N) is sufficient.
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Figure 7.34 Example of minimum covering {T = 9}.

The algorithm with N configurations is also proposed in the work of Towles and Dally
[32]. The algorithm is mainly made of N maximum size matchings and thus the total time
complexity is O(N3.5).

DOUBLE. As described in the previous section, using the minimal number of switchings
requires a speedup of at least log N . In this section, we show that by allowing 2N switchings,
the minimum speedup Smin can be reduced to approximately two. Most importantly, the
minimum speedup is no longer a function of N . This approach has the advantage of the
EXACT algorithm, a small constant speedup, combined with a number of switchings that
grows linearly with N .

DOUBLE [35] algorithm works as follows:

Step 1. Split C. Define and N × N matrix A such that ai, j = ⌊
ci, j/(T/N)

⌋
.

Step 2. Color A. Construct the bipartite multigraph GA from A (the number of edges
between vertices is equal to the value of the corresponding entry of A). Find a minimal
edge-coloring of A. Set i ← 1.

Step 3. Schedule coarse. For a specific color in the edge-coloring of GA, construct a
switch configuration P(i) from the edges assigned that color. Set φ(i) ← �T/N� and
i ← i + 1. Repeat step 3 for each of the colors in GA.

Step 4. Schedule fine. Find any N nonoverlapping switch schedules P(N + 1), . . . ,
P(2N) and set φ(N + 1), . . . , φ(2N) to �T/N�.

DOUBLE works by separating C into coarse and fine matrices and devotes N configu-
rations to each. The algorithm first generates the coarse matrix A by dividing the elements
of C by T/N and taking the floor. The rows and columns of A sum to at most N , thus the
corresponding bipartite multigraph can be edge-colored in N colors. Each subset of edges
assigned to a particular color forms a matching, which is weighted by �T/N�. The fine
matrix for C does not need to be explicitly computed because its elements are guaranteed
to be less than �T/N�. Thus, any N configurations that collectively represent every entry
of C, each weighted by �T/N�, can be used to cover the fine portion.

An example execution of DOUBLE is shown in Figure 7.35. The algorithm begins by
creating the coarse matrix A by dividing each element in C by T/N and taking the floor.
So, in the example, entry (1,1) of A contains �16/(T/N) = 16/(16/4) = 4. The resulting
matrix A has row and column sums ≤4, ensuring that it can be edge colored with four colors
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Figure 7.35 Example of DOUBLE {N = 4, T = 16}.

(step 2). Then, the edges assigned to each color are converted to schedules in step 3. For
example, P(1) corresponds to the subset of edges assigned to color 1 during step 2. Also,
some of the schedules may not be complete permutations because the row and column sums
of A are less than N , such as P(3) and P(4), but it is still guaranteed that all the elements
of A are covered. In general, step 3 creates at most N matchings with weight �T/N�, for a
total weight of approximately T .

Step 4 picks four nonoverlapping schedules, P(5) through P(8), and each is assigned a
weight of �T/N� = 4. In general, step 4 creates the same total weight as step 3: approxi-
mately T . Therefore, the total weight to schedule C(T) using DOUBLE is approximately
2T and Smin = 2.

In brief, exact covering generates Ns = N2 − 2N + 2 schedules for every T time slots,
and no speedup is required. The complexity of exact covering is O(N4.5). Minimum switch-
ing generates only N schedules to cover the batch of requests, but requires a speedup of
�(log N). The complexity of minimum switching is O(N3.5). DOUBLE generates Ns = 2N
schedules for every T time slots and a speedup of two is required. The DOUBLE algorithm
produces schedules with these properties in O(N2 log N) time using the edge-coloring algo-
rithm of [36]. When the port number N and the reconfiguration overhead δ are large, the
delay of exact covering will not be accepted. When the bandwidth is expensive, the �(log N)

speedup of minimum switching will cause, too much bandwidth waste. DOUBLE will be
a better tradeoff between delay and bandwidth for a large range of N and T .

7.5.2 Fixed Size Synchronous Frame-Based Matching

Li et al. [37] have described a fixed-size synchronous frame-based matching scheme, where
every K time slots are grouped into a frame. When K = 1, the frame-based matching
becomes the cell-based matching. In a frame-based matching, we can assume K � 1.
The matching is computed for each frame and the switch fabric is only updated on frame
boundaries. Since the time to compute the new matching set is not limited to one time slot,
more complex scheduling can be executed in frame-based matching.

Figure 7.36 shows the working process of the synchronous frame-based matching. Each
matching for the next frame is computed in m time slots and the result is available at the end
of each frame. Then, at the beginning of the next frame, L time slots are needed to reconfigure
the switch fabric. In the following K − L time slots, valid packets are switched from matched
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Figure 7.36 Fixed-size synchronous frame-based matching scheme.

input ports to output ports. L time slots overhead are introduced by reconfiguration in
each frame. At least K/(K − L) speedup is required to compensate the bandwidth during
the reconfiguration. In the following, three kinds of fixed-size synchronous frame-based
matching schemes are studied.

Frame-Based Maximum Weight Matching. In the cell-based scheduling, maximum
weight matching (MWM) has been proved to be stable for any admissible traffic that satis-
fies the strong law of large numbers (SLLN). Naturally, MWM may be used in frame-based
matching. But in frame-based matching, we cannot achieve maximum weight at each time
slot. Instead, as shown in Figure 7.36, we can compute a matching that achieves the maxi-
mum weight at the time slot of getting VOQ status. The frame-based MWM is still stable
under any admissible Bernoulli i.i.d. traffic.

The complexity of MWM is O(N3), which is not practically implemented even with the
relaxed timing available under frame-based matching.

Frame-Based Maximal Weight Matching. Maximal weight matching algorithm is
proposed to approximate MWM with less complexity. The most straightforward maximal
weight matching algorithm is to sort all N2 VOQs by their weight and always select the
VOQs with the largest weight for service. Ties can be broken randomly. The complexity of
this sorting operation is O(N2 log N). Sorting VOQs in a distributed manner at each input
line card can further reduce the time complexity. The details of this algorithm are as follows.

Step 1: At m time slots before a new frame starts, get weights for all VOQs. At each
input, sort all N VOQs by their weights in decreasing order. Let h = N .

Step 2: Consider the h VOQs at the top of the h sorted lists, and select the one with the
largest weight and match the corresponding input and output. Delete the sorted list
of the corresponding input and all VOQs destined to the corresponding output.

Step 3: h = h − 1. If h > 0, go to step 2.

Step 4: Update the matching set at the boundary of a new frame.

The complexity of step 1 is O(log N). Step 2 also takes O(log N) steps, and at most N
executions are needed. So the total time complexity is O(N log N).

Figure 7.37 shows an example of frame-based maximal weight matching where the port
number is four. During iteration 1, the weight of L(1, 2) is the maximum, so the match
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Figure 7.37 Example of frame-based maximal weight matching.

between input port 1 and output 2 is established. Then L(1, 2), L(1, 1), and L(3, 2) are
removed, and only L(4, 4) and L(3, 4) are left in the following iterations.

Frame-Based Multiple Iteration Weighted Matching. In a cell-based electronic
switch, practical matching schemes, such as PIM, iSLIP, and DRRM, use multiple iterations
to converge on a maximal size matching. Similarly, multiple iterative weighted matching
scheme, such as longest queue first (iLQF) and oldest queue first (iOQF), converge on a
maximal weight matching within log N iterations.

In an optical switch, a frame-based multiple iteration weighted matching can be used
to converge on a frame-based maximal weight matching. Simulation results show that
by using log N iterations, the schedule can achieve almost the same performance as that
of a frame-based maximal weight matching. A frame-based multiple iterative weighted
matching scheme works as the following in every iteration.

Step 1: Each unmatched input sends requests for all nonempty VOQs along with their
weights.

Step 2: If an unmatched output receives any request, it selects the request with the largest
weight and sends a grant to the corresponding input. Ties are broken randomly.

Step 3: If an unmatched input receives multiple grants, it accepts the grant corresponding
to the largest weight. Ties are broken randomly. The corresponding input and output
port are set to be matched and excluded from the following iterations.

Figure 7.38 shows an example of frame-based multiple iteration weighted matching. The
value upon each edge is the weight from an input to the corresponding output. Each output
grants an input with the highest weight, and each input accepts an output with the highest
weight.

The complexity of one iteration is O(log N), and log N iterations are needed to converge
the frame-based maximal weight matching. Therefore, the complexity of this scheme is as
low as O(log2 N). Moreover, this algorithm can be implemented in a distributed manner
and is more practical.
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Figure 7.38 Example of frame-based maximal weight matching.

When the configuration time L is set to 0, our simulation results show that the throughput
of a frame-based MWM algorithm under uniform traffic is 100 percent, and is close to 100
percent under all non-uniform traffic patterns considered by Li et al. [21] except the diagonal
traffic pattern. According to previous studies, the diagonal traffic pattern is an extremely
unbalanced nonuniform pattern, in which for an input i, a ratio p of arrivals is destined
to output i, and 1 − p to output (i + 1) mod N . Switches usually have worse performance
under diagonal traffic than under other more balanced traffic patterns. The throughput of
frame-based maximal weight matching under diagonal traffic is always higher than 88
percent. Moreover, the simulated throughput performance of the frame-based multiple
iteration weighted matching is almost the same as that of the frame-based maximal weight
matching.

Delay performance is measured in time slots, where one time slot is the time to transfer
one fixed-size packet. The performance of frame-based multiple iteration weighted match-
ing is quite close to the performance of the frame-based maximal weight matching. Figure
7.39 shows the average delay of the frame-based maximal weight matching for different
switch sizes when the reconfiguration time L is 0 or 10, and the frame length K is 50 time
slots. We can infer that under light load, the average delay with nonzero L is close to the
sum of L and the average delay when L is zero. Note that the average delay is close to
NK/2. This result is consistent with the intuition that under a moderate load regime, the
arriving packet has to wait for N/2 frames before its own VOQ is served. Therefore, when
K becomes large, the measured delay will increase linearly. For example, when K = 200,
the corresponding delay is about four times than shown in Figure 7.39.

If a cell slot time is 100 ns, a delay of 1400 time slots is about 140 µs. Therefore, a future
reduction in switch reconfiguration time to 10 µs will make it feasible. Given a switch size
N , reconfiguration time L and the required delay, the corresponding frame size can then be
determined.

7.5.3 Asynchronous Variable-Size Frame-Based Matching

In fixed-size synchronous frame-based matching schemes, the switch fabric is updated for
each frame instead of each time slot to reduce the reconfiguration frequency. However, if
only part of the connections is reconfigured when necessary and others keep transferring
cells, which is corresponding to asynchronous frame matching, the overhead can be reduced
further, especially under heavy offered load. This variation is feasible. For instance, MEMS-
based optical switches can reconfigure a subset of input and output ports while the other
input-output ports continue to switch packets. Exhaustive service matching and limited
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Figure 7.39 Average delay of frame-based maximal weight matching switch under uniform traffic
when K = 50.

service matching algorithms [21] can be extended for asynchronous variable-size frame
matching [37]. Under uniform traffic, we can expect that exhaustive service matching and
limited service matching will lead to similar performance. Under nonuniform traffic, limited
service matching can avoid unfairness and instability.

For an optical switch, exhaustive service dual round-robin matching (EDRRM) can be
modified so that arbitration will only be done when necessary. In the original EDRRM,
arbitration is done by input arbiters and output arbiters based on the round-robin service
discipline. When an output is matched to an input, this output is locked by the input.
When the VOQ under service is emptied, the corresponding input sends a message to the

Figure 7.40 Example of EDRRM with four ports.
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locked output to release it. The released input and output increase their arbiter pointers by
one location, so that the VOQ just being served will have the lowest priority in the next
arbitration. A locked output cannot grant any request from other inputs. An input sends
requests to outputs if and only if it is not matched to any output. When a match is found,
only this new connection will be updated which leads to a reconfiguration time, and all
other connections stay uninterrupted. In order to reduce the frequency of switch fabric
reconfigurations, in frame-based matching EDRRM is modified as follows. When a VOQ
is completely served and the corresponding input or output has not successfully found a
new match, the connection for this VOQ will not be disconnected. In this way, new arrivals
to this VOQ can still be transferred before the switch fabric is updated.

Figure 7.40 shows an example of EDRRM where the port number is four. At the begin-
ning, all the pointers are pointing at port 1. In step 1, each input port sends a request. In step
2, each output port grants the requests. Finally, there are three matchings in total. Input port
1 locks its pointer to output port 1 because its request is granted by output port 1. At the
same time, output port 1 locks its pointer to input port 1. In the following time slots, output
port 1 will always grant input port 1 if there is a request from input port 1 to output port 1.
Input port 2 and 4 update their pointers similar to input port 1. The request of input port 3
is not granted by output port 2, so input port 3 updates its pointer to 4, and thus makes the
VOQ to output port 3 become the lowest priority to send a request. Output port 3 does not
update its pointer because it does not receive any requests.

To further reduce the bandwidth overhead, one possible variation of EDRRM is to start
searching for the next matching when the number of cells waiting in the VOQ under service
drops below a threshold. Additionally, since the arbitration time is not necessarily limited to
one time slot, a higher complex matching scheme can be used to improve the performance
and this will be a future topic of research.

When the reconfiguration time L is larger than zero in an optical switch, throughput is
expected to degrade. Simulated throughput with different values of non-zero L and different
switch size is shown in Table 7.2. It shows that throughput is relatively insensitive to L. The
throughput can be improved by an appropriate speedup.

When the reconfiguration overhead L > 0, the variable frame schemes have better delay
performance than fixed frame schemes under low and moderate loads. This is due to the fact
that under low loads, fixed frames are often not filled, which leads to unnecessary additional
delay. In variable-size frame-based matching schemes, the frame size adapts to the load of
each VOQ, which means most frames are accumulated to be fully filled.

The delay performance of an optical EDRRM switch under uniform traffic can be ana-
lyzed by using an exhaustive random polling system model. The model can be applied to
predict the performance of switches with, too large size to be simulated. The performance

TABLE 7.2 Throughput of an EDRRM Optical
Switch

L (time slots) 0 10 100 1000

4 × 4 switch 0.9926 0.9913 0.9760 0.8946
8 × 8 switch 0.9408 0.9399 0.99383 0.9232
16 × 16 switch 0.9680 0.9673 0.9587 0.9279
32 × 32 switch 0.9794 0.9768 0.9636 0.9153
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Figure 7.41 Average cell delay of the EDRRM with large switch size and varied L under uniform
traffic.

analysis with L is a straightforward extension of the analysis without introducing L in [29].
When N goes to infinity, the average switch over time and the average delay converge to a
limit for ρ < 1.

lim
N→∞ E(S) = 1 − e−ρ

1 − e−(1−ρ)(1−e−ρ)
− 1 + L,

and

E(T) → E(S)
N − ρ

1 − ρ
+ 2 − ρ

2(1 − ρ)
≈ E(S)

N

1 − ρ
.

Figure 7.41 shows the calculated average delay E(T) of four switches of large size when
the reconfiguration time L is 0 and 10. Compared with switches with zero configuration over-
head, the delay is approximately increased by LN/(1 − ρ). For instance, when N = 256,
L = 10, and ρ = 0.1, the additional delay caused by non-zero L is about 2844 time slots.
The delay can be lowered with a speedup to compensate the configuration overhead.

7.6 STABLE MATCHING WITH SPEEDUP

The stable matching problem is a bipartite matching, proposed by Gale and Shapley [38].
An existing algorithm to solve the problem is GSA (Gale-Shapley algorithm) with a lower
complexity bound of O(N2) [39]. In the input-buffered matching algorithms, GSA tries
to find stable input–output port matching by using predefined input port priority lists and
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TABLE 7.3 Comparison of Stable Marriage Algorithms

Algorithm Input Preference List Output Preference List Speedup Complexity

MUCFA Urgent value Urgent value 4 ω(N2)

CCF Output occupancy Urgent value 2 O(N)

LOOFA Output occupancy Arrival time 2 O(N)

output port priority lists, which are mainly used to solve input and output port contention.
A match is considered to be stable, when all the matched input and output ports cannot find
a better matching with a higher priority from those unmatched input and output ports.

In this section, we discuss three stable matching algorithms: most-urgent-cell-first
algorithm (MUCFA), critical cell first (CCF), last-in-highest-priority (LIHP), and lowest-
output-occupancy-cell-first (LOOFA). Table 7.3 summarizes the operations and complexity.

7.6.1 Output-Queuing Emulation with Speedup of 4

The most urgent cell first algorithm (MUCFA) scheme [40] schedules cells according to
the “urgency”. A shadow switch with output queuing is considered in the definition of the
“urgency” of a cell. The urgency is also called the time to leave (TL), which indicates the
time from the present that the cell will depart from the OQ switch. This value is calculated
when a cell arrives. Since the buffers of the output-queued switch are FIFO, the urgency of
a cell at any time equals the number of cells ahead of it in the output buffer at that time. It
gets decremented after every time slot. Each output has the record of the urgency value of
every cell destined for it. The algorithm is run as follows:

1. At the beginning of each phase, each output sends a request for the most urgent cell
(i.e., the one with the smallest TL) to the corresponding input.

2. If an input receives more than one request, then it will grant to that output whose
cell has the smallest urgency number. If there is a tie between two or more outputs,
a supporting scheme is used. For example, the output with the smallest port number
wins, or the winner is selected in a round-robin fashion.

3. Outputs that lose contention will send a request for their next most urgent cell.

4. The above steps run iteratively until no more matching is possible. Then cells are
transferred and MUCFA goes to the next phase.

An example is shown in Figure 7.42. Each number represents a queued cell, and the
number itself indicates the urgency of the cell. Each input maintains three VOQs, one for
each output. Part (a) shows the initial state of the first matching phase. Output 1 sends
a request to input 1 since the HOL cell in VOQ1,1 is the most urgent for it. Output 2
sends a request to input 1 since the HOL cell in VOQ1,2 is the most urgent for it. Output
3 sends a request to input 3 since the HOL cell in VOQ3,3 is the most urgent for it. Part
(b) illustrates matching results of the first phase, where cells from VOQ1,1, VOQ2,2, and
VOQ3,3 are transferred. Part (c) shows the initial state of the second phase, while part (d)
gives the matching results of the second phase, in which HOL cells from VOQ1,2 and VOQ3,3
are matched.
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Figure 7.42 An example of two phases of MUCFA.

It has been shown that, under an internal speedup of 4, a switch with virtual-output
queuing and MUCFA scheduling can behave identically to an output-queued switch,
regardless of the nature of the arrival traffic.

7.6.2 Output-Queuing Emulation with Speedup of 2

This category of algorithms is based on an implementation of priority lists for each arbiter
to select a matching pair [41]. The input priority list is formed by positioning each arriving
cell at a particular place in the input queue. The relative ordering among other queued cells
remains unchanged. This kind of queue is called a push-in queue. Some metrics are used
for each arriving cell to determine the location. Furthermore, if cells are removed from the
queue in an arbitrary order, we call it a push-in arbitrary out (PIAO) queue. If the cell at the
head of queue is always removed next, we call it a push-in first out (PIFO) queue.

The algorithms described in this section also assume a shadow output-queued switch,
based on which the following terms are defined:

1. Time to leave – TL(c) is the time slot in which cell c would leave the shadow OQ
switch. Of course, TL(c) is also the time slot in which cell c must leave from the real
switch for the identical behavior to be achieved.

2. Output cushion – OC(c) is the number of cells waiting in the output buffer at cell
c’s output port that have a lower TL value than cell c. If a cell has a small (or zero)
output cushion, then it is urgent to be delivered to its output so that it can depart
when its TL is reached. Conversely, if a cell has a large output cushion, it may be
temporarily set aside while more urgent cells are delivered to their outputs. Since the
switch is work-conserving, a cell’s output cushion is decremented after every time
slot. A cell’s output cushion increases only when a newly arriving cell is destined for
the same output and has a more urgent TL.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 276 — #52

276 INPUT-BUFFERED SWITCHES

3. Input thread – IT(c) is the number of cells ahead of cell c in its input priority list.
IT(c) represents the number of cells currently at the input that have to be transferred
to their outputs more urgently than cell c. A cell’s input thread is decremented only
when a cell ahead of it is transferred from the input, and is possibly incremented when
a new cell arrives. It would be undesirable for a cell to simultaneously have a large
input thread and a small output cushion – the cells ahead of it at the input may prevent
it from reaching its output before its TL. This motivates the definition of slackness.

4. Slackness – L(c) equals the output cushion of cell c minus its input thread, that is,
L(c) = OC(c) − IT(c). Slackness is a measure of how large a cell’s output cushion
is with respect to its input thread. If a cell’s slackness is small, then it is urgent to be
transferred to its output. Conversely, if a cell has a large slackness, then it may be
kept at the input for a while.

Critical Cell First (CCF ). CCF is a scheme for inserting cells in input queues that are
PIFO queues. An arriving cell is inserted as far from the head of its input queue as possible
such that the input thread of the cell is not larger than its output cushion (i.e., a positive
slackness). Suppose that cell c arrives at input port P. Let x be the number of cells waiting in
the output buffer at cell c’s output port. Those cells have a lower TL value than cell c or the
output cushion OC(c) of c. Insert cell c into (x + 1)th position from the front of the input
queue at P. As shown in Figure 7.43, each cell is represented by its destined output port and
the time to leave. For example, cell (B,4) is destined for output B and has a TL value equal
to 4. Part (a) shows the initial state of the input queues. Part (b) shows the insertion of two
incoming cells (C,4) and (B,4) to ports Y and Z, respectively. Cell (C,4) is inserted at the
third place of port Y and cell (B,4) at the second place of port Z. Hence, upon arrival, both
cells have zero slackness. If the size of the priority list is less than x cells, then place c at the
end of the input priority list. In this case, cell c has a positive slackness. Therefore, every
cell has a non-negative slackness on arrival.

Last in Highest Priority (LIHP ). LIHP is also a scheme for inserting cells at input
queues. It was proposed mainly to show and demonstrate the sufficient speedup to make an
input–output queued switch emulate an output-queued switch. LIHP places a newly arriving

Figure 7.43 Example of CCF priority placement.
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Figure 7.44 Example of placement for LIHP. (a) Initial state; (b) New incoming cell is placed at
the highest priority position..

cell right at the front of the input priority list, providing a zero input thread (IT(c) = 0) for
the arriving cell. See Figure 7.44 for an example. The scheduling in every arbitration phase
is a stable matching based on the time to leave value and the position in its input priority
list of each queued cell.

The necessary and sufficient speedup is 2 − 1/N for a N × N input-and-output queued
switch to exactly emulate a N × N output-queued switch with FIFO service discipline.

The necessary condition can be shown by the example as shown below. Since the speedup
2 − (1/N) represents a non-integral distribution of arbitration phases per slot between one
and two, we first describe how scheduling phases are distributed. A speedup of 2 − (1/N)

corresponds to having a truncated time slot out of every N time slots; the truncated time
slot has just one scheduling phase, whereas the other N − 1 time slots have two scheduling
phases each. Figure 7.45 shows the difference between one-phased and two-phased time
slots. We assume that the scheduling algorithm does not know in advance whether a time
slot is truncated.

Recall that a cell is represented as a tuple (P, TL), where P represents which output port
the cell is destined to and TL represents the time to leave for the cell. For example, the cell
(C,7) must be scheduled for port C before the end of time slot 7.

The input traffic pattern that provides the lower bound for an N × N input–output queued
switch is given as follows. The traffic pattern N spans time slots, the last of which is
truncated:

1. In the first time slot, all input ports receive cells destined for the same output port,
P1.

2. In the second time slot, the input port that had the lowest time to leave in the previous
time slot does not receive any more cells. In addition, the rest of the input ports receive
cells destined for the same output port, P2.

Figure 7.45 One scheduling phase and two scheduling-phase time slots.
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Figure 7.46 Lower bound input traffic pattern for a 4 × 4 switch.

3. In the ith time slot, the input ports that had the lowest time to leave in each of the
i − 1 previous time slots do not receive any more cells. In addition, the rest of the
input ports must receive cells destined for the same output port, Pi.

One can repeat the traffic pattern just mentioned as many times as is required to create
arbitrarily long traffic patterns. Figure 7.46 shows the above sequence of cells for a 4 × 4
switch. The departure events from the output-queued switch are depicted on the right, and
the arrival events are on the left. For simplicity, we present the proof of our lower bound on
this 4 × 4 switch instead of a general N × N switch.

Figure 7.47 shows the only possible schedule for transferring these cells across in seven
phases. Of the four time slots, the last one is truncated, giving a total of seven phases.
Cell A-1 must leave the input side during the first phase, since the input–output queued
switch does not know whether the first time slot is truncated. Similarly, cells B-2, C-3, and
D-4 must leave during the third, fifth, and seventh phases, respectively (see Fig. 7.47a).
Cell A-2 must leave the input side by the end of the third phase. However, it cannot leave
during the first or the third phase because of contention. Therefore, it must depart during
the second phase. Similarly, cells B-3 and C-4 must depart during the fourth and sixth
phases, respectively (see Fig. 7.47b). Continuing this elimination process (see Fig. 7.47c
and d), there is only one possible scheduling order. For this input traffic pattern, the switch
needs all seven phases in four time slots, which corresponds to a minimum speedup of
7/4 (or 2 − 1/4). The proof of the general case for a N × N switch is a straightforward
extension of the 4 × 4 example.

7.6.3 Lowest Output Occupancy Cell First (LOOFA)

The LOOFA is a work-conserving scheduling algorithm [42]. It provides 100 percent
throughput and a cell delay bound for feasible traffic, using a speedup of 2. An input-
and-output queued architecture is considered. Two versions of this scheme were presented:
the greedy and the best-first. This scheme considers three different parameters associated
with a cell, say cell c, to perform a match: the number of cells in its destined output queue
or output occupancy OCC(c), the time stamp of a cell or cell age TS(c), and the smallest
port number to break ties. Under the speedup of 2, each time slot has two phases. During
each phase, the greedy version of this algorithm works as follows (see Figure 7.48 for
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Figure 7.47 Scheduling order for the lower bound input traffic pattern in Figure 7.46.

an example):

1. Initially, all inputs and outputs are unmatched.

2. Each unmatched input selects an active VOQ (i.e., a VOQ that has at least one cell
queued) going to the unmatched output with the lowest occupancy, and sends a request
to that output. Ties are broken by selecting the smallest output port number. See part
(a) in Figure 7.48.

3. Each output, on receiving requests from multiple inputs, selecting the one with the
smallest OCC and sends the grant to that input. Ties are broken by selecting the
smallest port number.

4. Return to step 2 until no more connections can be made.

An example of the greedy version is shown in Figure 7.48. The tuple “x, y” in the VOQ
represents the output occupancy OCC(c) and the timestamp TS(c) of cell c, respectively. In
the upper part of the figure, the arrows indicate the destination for all different cells at the
input ports. The gray arrows in the lower part of the figure indicate the exchange of requests
and grants. The black arrows indicate the final match. Part (a) shows that each input sends
a request to the output with the lowest occupancy. Output 2 receives two requests, one from
A and the other from B, while output 3 receives a request from input C. Part (b) illustrates
that, between the two requests, output 2 chooses input A, the one with lower TS. Output 3
chooses the only request, input C.
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Figure 7.48 Matching example with the greedy LOOFA.

Figure 7.49 Matching example with the best-first version of LOOFA.
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The best-first version works as follows:

1. Initially, all inputs and outputs are unmatched.

2. Among all unmatched outputs, the output with the lowest occupancy is selected. Ties
are broken by selecting the smallest output port number. All inputs that have a cell
destined for the selected output send a request to it.

3. The output selects the cell request input with the smallest time stamp and sends the
grant to the input. Ties are broken by selecting the smaller input port number.

4. Return to step 2 until no more connections can be made (or N iterations are completed).

Figure 7.49 shows a matching example with the best-first version example. The selection
of the output with the lowest OCC(c) results in a tie. Outputs 2 and 3 have the lowest OCC.
This tie is broken by selecting output 2 since this port number is the smaller number.
Therefore, inputs A and B send a request to this output as shown in part (b), while part (c)
illustrates that output 2 grants the oldest cell, input A. Part (d) shows the matching result
after the first iteration. The second iteration begins in part (e) when output 3 is chosen as
the unmatched output port with the lowest OCC with requests from inputs B and C. Input
B is chosen in part ( f ) for its lowest TS(c). Part (g) depicts the final match.

Both algorithms achieve a maximal matching, with the greedy version achieving it in less
iterations. On the other hand, it has been proven that, when combined with the oldest-cell-
first input selection scheme, the best-first version provides delay bounds for rate-controlled
input traffic under a speedup of 2. Denote Da and Do as the arbitration delay and the output
queuing delay of any cell. It can be shown that Da ≤ 4N/(S − 1) and Do ≤ 2N cell slots,
where S is the speedup factor.

REFERENCES

[1] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in
an input-queued switch,” IEEE Transactions on Communications, vol. 47, no. 8, pp. 1260–1267
(Aug. 1999).

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks,” IEEE Transactions
on Automatic control, vol. 37, no. 12, pp. 1936–1949 (Dec. 1992).

[3] R. E. Tarjan, “Data structures and network algorithms,” in Proc. Society for Industrial and
Applied Mathematics, Pennsylvania (Nov. 1983).

[4] A. Mekkittikul and N. Mckeown, “A practical scheduling algorithm to achieve 100% throughput
in input-queued switches,” INFOCOM’98, San Francisco, California, pp. 792–799 (Mar. 1998).

[5] D. Shah and M. Kopikare, “Delay bounds for approximate maximum weight matching algo-
rithms for input queued switches,” in Proc. IEEE INFOCOM’02, New York, pp. 1024–1031
(June 2002).

[6] J. E. Hopcroft and R. M. Karp, “An n
5
2 algorithm for maximum matchings in bipartite graphs,”

SIAM, J. Comput., vol. 2, no. 4, pp. 225–231 (Dec. 1973).

[7] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. thesis, UC
Berkeley, May 1995.



Book1099 — “c07” — 2007/2/19 — 20:36 — page 282 — #58

282 INPUT-BUFFERED SWITCHES

[8] J. G. Dai and B. Prabhakar, “The throughput of data switches with and without speedup,” in
Proc. IEEE INFOCOM’00, Tel Aviv, Israel, pp. 556–564 (Mar. 2000).

[9] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the stability of input-queued switches
with speed-up,” IEEE/ACM Transactions on Networking, vol. 9, no. 1, pp. 104–118 (Feb. 2001).

[10] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed switch scheduling
for local area networks,” ACM Transactions on Computer Systems, vol. 11, no. 4, pp. 319–352
(Nov. 1993).

[11] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM
Transactions on Networking, vol. 7, no. 2, pp. 188–201 (Apr. 1999).

[12] N. McKeown, P. Varaiya, and J. Warland, “Scheduling cells in an input-queued switch,” IEE
Electronics Letters, vol. 29, issue 25, pp. 2174–2175 (Dec. 1993).

[13] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a dual round-robin switch,” in Proc.
IEEE INFOCOM 2001, Anchorage, Alaska, vol. 3, pp. 1688–1697 (Apr. 2001).

[14] Y. Li, “Design and analysis of schedulers for high speed input queued switches,” Ph.D.
Dissertation, Polytechnic University, Brooklyn, New York, Jan. 2004.

[15] D. N. Serpanos and P. I. Antoniadis, “FIRM: a class of distributed scheduling algorithms for
high-speed ATM switches with multiple input queues,” in Proc. IEEE INFOCOM’00, Tel Aviv,
Israel, pp. 548–554 (Mar. 2000).

[16] H. J. Chao and J. S. Park, “Centralized contention resolution schemes for a large-capacity optical
ATM switch,” in Proc. IEEE ATM Workshop, Fairfax, Virginia (May 1998).

[17] H. J. Chao, “Satur: A terabit packet switch using dual round-robin,” IEEE Communications
Magazine, vol. 38, no. 12, pp. 78–84 (Dec. 2000).

[18] E. Oki, R. Rojas-Cessa, and H. J. Chao, “A pipeline-based maximal-sized matching scheme
for high-speed input-buffered switches,” IEICE Transactions on Communications, vol. E85-B,
no. 7, pp. 1302–1311 (July 2002).

[19] A. Smiljanic, R. Fan, and G. Ramamurthy, “RRGS-round-robin greedy scheduling for
electronic/optical terabit switches,” in Proc. IEEE GLOBECOM’99, Rio de Janeireo, Brazil,
pp. 1244–1250 (Dec. 1999).

[20] H. Takagi, “Queueing analysis of polling models: an update,” in Stochastic Analysis of Computer
and Communication Systems. Elsevier Science Inc., New York; pp. 267–318, 1990.

[21] Y. Li, S. Panwar, and H. J. Chao, “The dual round-robin matching switch with exhaustive
service,” in Proc. High Performace Switching and Routing (HPSR) 2002, Kobe, Japan (May
2002).

[22] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-performance schedulers for
high-aggregate bandwidth switches,” in Proc. IEEE INFOCOM’02, New York, vol. 3, pp.
1160–1169 (2002).

[23] L. Tassiulas, “Linear complexity algorithms for maximum throughput in radio networks and
input queued switches,” in Proc. IEEE INFOCOM’98, San Francisco, California, vol. 2, pp. 533–
539 (Mar. 1998).

[24] A. Nijenhuis and H. Wilf, Combinatorial Algorithms: for Computers and Calculators.
Academic Press, Orlando, Florida, 1978.

[25] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algorithms for high-aggregate
bandwidth switches,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 4,
pp. 546–559 (May 2003).

[26] D. Shah, P. Giaccone, and B. Prabhakar, “Efficient randomized algorithms for input-queued
switch scheduling,” IEEE Micro, vol. 22, no. 1, pp. 10–18 (Jan. 2002).



Book1099 — “c07” — 2007/2/19 — 20:36 — page 283 — #59

REFERENCES 283

[27] Y. Li, S. Panwar, and H. J. Chao, “Exhaustive service matching algorithms for input queued
switches,” in Proc. Workshop on High Performance Switching and Routing (HPSR 2004),
Phoenix, Arizona (Apr. 2004).

[28] L. Kleinrock and H. Levy, “The analysis of random polling systems,” Operations Research,
vol. 36, no. 5, pp. 716–732 (Sept. 1988).

[29] Y. Li, S. Panwar, and H. J. Chao, “Performance analysis of a dual round robin matching switch
with exhaustive service,” in Proc. IEEE GLOBECOM’02, Taipei, Taiwan, vol. 3, pp. 2292–2297
(Nov. 2002).

[30] F. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and E. Neri, “Packet scheduling in input-
queued cell-based switches,” in Proc. IEEE INFOCOM’01, Anchorage, Alaska, vol. 2, pp.
1085–1094 (Apr. 2001).

[31] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: recent traffic measurements
from an Internet backbone,” in Proc. INET’98, Geneva, Switzerland, pp. 21–24 (July 1998).

[32] B. Towles and W. Dally, “Guaranteed scheduling for switches with configuration overhead,” in
Proc. IEEE INFOCOM’02, New York, vol. 1, pp. 342–351 (June 2002).

[33] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE Transactions on
Communications, vol. 27, no. 10, pp. 1449–1455 (Oct. 1979).

[34] C. S. Chang, W. J. Chen, and H. Y. Huang, “Birkhoff–von Neumann input buffered crossbar
switches,” in Proc. IEEE INFOCOM’00, Tel Aviv, Israel, pp. 1614–1623 (Mar. 2000).

[35] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with configuration overhead,”
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 835–847 (Oct. 2003).

[36] R. Cole and J. Hopcroft, “On edge coloring bipartite graph,” SIAM Journal on Computing,
vol. 11, no. 3, pp. 540–546 (1982).

[37] Y. Li, S. Panwar, and H. J. Chao, “Frame-based matching algorithms for optical switches,” in
Proc. IEEE Workshop on High Performance Switching and Routing (HPSR 2003), Torino, Italy,
pp. 97–102 (June 2003).

[38] D. Gale and L. S. Shapley, “College admission and the stability of marriage,” American
Mathematical Monthly, vol. 69, no. 1, pp. 9–15 (1962).

[39] D. Gusfield and R. Irving, The Stable Marriage Problem: Structure and Algorithms. The MIT
Press, Cambridge, Massachusetts, 1989.

[40] B. Prabhakar and N. McKeown, “On the speedup required for combined input and output queued
switching,” Automatica, vol. 35, issue 12, pp. 1909–1920 (Dec. 1999).

[41] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queuing with a
combined input/output-queued switch,” IEEE Journal on Selected Areas in Communications,
vol. 17, no. 6, pp. 1030–1039 (June 1999).

[42] P. Krishna, N. Patel, A. Charny, and R. Simcoe, “On the speedup required for work-conversing
crossbar switches,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 1057–
1066 (June 1999).


