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CHAPTER 5

BASICS OF PACKET SWITCHING

An Internet Protocol (IP) router is a vital network node in today’s packet switching network.
It consists of multiple input/output ports. Packets from different places arrive at the input
ports of the IP router. They are delivered to appropriate output ports by a switch fabric
according to a forwarding table, which is updated by routing protocols. In the packet switch
network, packets from various input ports may destine for the same output port simulta-
neously, resulting in output port contention. How to arbitrate and schedule packets when
contention arises is an important and challenging issue in designing a high-performance
scalable packet switch.

Traditional telephony networks use circuit switching techniques to establish connections.
In the circuit switching scheme, there is usually a centralized processor that determines all
the connections between input and output ports. Each connection lasts for an average of
3 minutes. For an N × N switch, there are at most N connections simultaneously and the
time required to make each connection is 180 seconds divided by N . For instance, if N is
1000, the time to make a connection is at most 180 ms, which is quite relaxed for most of
switch fabrics using current technology, such as CMOS crosspoint switch chips. However,
for IP routers, the time needed to configure the input–output connections is much more
stringent, and it is normally based on a fixed-length time slot. For instance, it could be as
small as 64 bytes to cope with the smallest packet length of 40 bytes. For a 10 Gbit/s line,
the slot time is about 50 ns. As the line bit rate increases and the number of the switch
ports increases, the time needed for each connection is further reduced. As a result, it is
impractical to employ centralized connection processors to establish connections between
the inputs and the outputs.

Thus, for IP routers, we do not use a centralized connection processor to establish connec-
tions. But rather, a self-routing scheme is used to establish input–output connections in a dis-
tributed manner. In other words, the switch fabric has intelligence to route packets to proper
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output ports, based on the physical output port addresses attached in front of each packet.
One of switch fabrics that have self-routing capability is, for instance, the banyan switch.

In addition to routing packets in the IP router, another important function is to resolve
the output port contention when more than one packet is destined for the same output port
at the same time. There are several contention-resolution schemes that have been proposed
since the first packet switch architecture was proposed in early 1980s. One way to resolve
the contention is to allow all packets that are destined for the same output port to arrive at the
output port simultaneously. Since only one packet can be transmitted via the output link at
a time, the remaining packets are queued at the output port. A switch with such architecture
is called the output-buffered switch. For such a scheme, there is a need to operate the switch
fabric and the memory at N times of the line speed, where N is the switch size. As the line
speed or the switch port number increases, this scheme becomes practically impossible to
implement. However, if all packets are not allowed to go to the same output port at a time,
a scheduling scheme (or called arbitration scheme) is required to arbitrate the packets that
are destined for the same output port. Packets that lose contention have to wait at the input
buffer. A switch with such architecture is called the input-buffered switch.

The way of handling output contention will impact the switch performance, complexity,
and implementation cost. Some schemes are implemented in a centralized manner and some
in a distributed manner. The latter usually allows the switch to be scaled in both line rate
and switch size while the former is for a smaller size switch and is usually less complex.
In addition to scheduling packets at the inputs when resolving output port contention,
packet scheduling is also implemented at the output of the switch. It schedules packet
transmission order according to their priorities and/or allocated bandwidth to meet each
connection’s delay/throughput (i.e., quality of service) requirements. Packet scheduling to
achieve quality of service requirements is discussed extensively in Chapter 4.

5.1 FUNDAMENTAL SWITCHING CONCEPT

Before discussing switching principles and architectures, some basic concepts in packet
switching are first presented.

Switching and Routing. The basic goals for switching and routing are the same, both try
to transfer information from one part to another. However, routing normally represents
a large-scale perspective, where information is exchanged between two nodes that can
be separated by a large distance in the network. While switching normally refers to
the information exchanged within a network node. Moreover, routing usually needs
the cooperation of other network nodes, and is based on a routing protocol, while
switching is only a function of a single device, and is based on a forwarding table,
switching architectures, and scheduling algorithms. Figures 5.1 and 5.2 illustrate
examples for switching and routing.

Unicast and Multicast. Majority of network connections are point-to-point, which is
called unicast. As a result, traffic that enters an input port of a switch fabric is only
destined for an output port. However, for applications of video/audio conferences
and data broadcasting, traffic from one source is sent to several different destinations.
To support multicast, extra switching mechanism is required to copy data from one
input port to multiple output ports. The multicast in a switch fabric is illustrated in
Figure 5.3.
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Figure 5.1 Typical routing example.

Figure 5.2 Typical switching example.

Figure 5.3 Multicast in switching fabric.
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Throughput and Speedup. The throughput of a switch fabric is defined as the ratio of
the average aggregated output rate to the average aggregated input rate when all the
input ports carry 100% traffic at line rate. It is a positive value no more than one.

A speedup of k means that the internal forwarding rate of the switch fabric is k
times the input line rate. So when a speedup exceeds one, buffers must be used at
output ports. Speedup allows a switch fabric to forward more than one packet at the
same time slot to the output port to alleviate output port contention, resulting in a
higher throughput.

Blocking and Output Contention. Here we refer to blocking and output contention in
space-division switching, since in time-division switching, traffic is multiplexed to
avoid blocking.

In space-division switching, the main issue is the matching of input–output ports.
Nonblocking means that when there is a request generated between an idle input
port and an idle output port, a connection can always be set up. Note that an idle
port refers to a port not connected nor requested. On the other hand, blocking means
that it is possible that no connection can be set up between the idle input/output
pair. Figure 5.4 shows an internal blocking in a three-stage Clos switch, when the
idle input port 9 requests the idle output port 4 or 6, a connection cannot be set up
because of internal blocking. Another example is shown in Figure 5.5, in a delta
network, input port 0 is requesting output port 5 and input port 2 is requesting output
port 4, but both need the same output port in the second stage to set up connections,
which causes internal blocking.A typical nonblocking switch architecture is a crossbar
switch.

Another problem that degrades the throughput of a switching fabric is the output
contention. It is not because of the design of switching architecture, but due to the
nature of bursty IP traffic. If more than one input port requests the same output port,
only one can be granted, so the others have to wait. This is depicted in Figure 5.6.
The output contention greatly affects the overall utilization of the switching fabric.

Cell-mode Switching and Packet-mode Switching. In ATM networks, information is
packed into fixed-size cells. So in an ATM switch, scheduling takes place per cell

Figure 5.4 Internal blocking in a Clos network caused by a new connection between input 9 and
output 4 or 6.
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Figure 5.5 Internal blocking in a delta network.

Figure 5.6 Output port contention.

time, which is called the time slot. But in IP networks, variable-length packets are
adopted, and so traditional scheduling algorithms in the switching fabric of IP routers
operate per packet basis. It is called pure packet-mode switching. However, because
of the random distribution of packet lengths, the scheduler becomes too complex to
design in large-scale routers.

To implement the ATM cell switching technology in IP routers, a popular archi-
tecture [1] has been proposed, as shown in Figure 5.7. In each input port, an input
segmentation module (ISM) is employed to convert the variable-size IP packet into
several fixed-size cells.1 Proper stuffing is used when the remaining packet is shorter
than a whole cell. Then the cells are buffered in the cell queues (CQs), for example,

1Cell is defined to be a fixed-length data unit used in the switch fabric. It consists of a cell header, used for routing
in the switch fabric and payload. It needs not necessarily to be an ATM cell.
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Figure 5.7 Input queuing cell switch with segmentation and reassembly.

virtual output queues (VOQs), each associated with each output. More details about
VOQs can be found in Chapter 7. Specific scheduling algorithms are implemented
in selecting cells out of VOQs and switching them to correct output port. The out-
put reassembly module (ORM) is required in each output port to reassemble cells of
the same packet together. After the ORM, a packet FIFO (PF) is used to buffer the
reassembled packets when the ORM has a speedup. This switching strategy is called
cell-mode switching in IP routers.

Recent studies by Marsan et al. [2] and Ganjali et al. [3] have presented another
scheduling strategy, packet-mode switching. A packet is divided into fixed-size cells
like in cell-mode, but cells of the same packet are scheduled contiguously, not indepen-
dently. The advantages of packet-mode switching are that the reassembly of packets
become much easier. It also benefits from lower average packet delay as compared to
cell-mode scheduling when the variance of packet length distribution is small.

5.2 SWITCH FABRIC CLASSIFICATION

The switch fabrics can be classified based on their switching techniques into two groups:
time-division switching (TDS) and space-division switching (SDS). TDS is further divided
into shared-memory type and shared-medium type. SDS is further divided into single-path
switches and multiple-path switches, which are in turn further divided into several other
types, as illustrated in Figure 5.8.

5.2.1 Time-Division Switching

Cells from different inputs are multiplexed and forwarded through a data path connecting
all inputs and outputs. Typical time-division switching structures are the shared-memory
switch (see Chapter 6) and the shared-medium switch. The time-division switching struc-
ture is limited by the internal communication bandwidth that should reach the aggregated
forwarding bandwidth of all the input ports. However, this class of switch provides an
advantage. Since every cell flows across the single communication structure, it can be
easily extended to support multicast/broadcast operations.
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Figure 5.8 Classification of switching architecture.

In a shared-medium switch, shown in Figure 5.9, cells arriving at input ports are
time-division multiplexed into a common high-speed medium, such as a bus or a ring,
of bandwidth equal to N times the input line rate. An address filter (AF) and an output FIFO
buffer are used in each output line that connects to the shared medium. The AF examines
the header of each incoming cell and then accepts only the cells destined for itself. In this
way, the multiplexed incoming cells are demultiplexed into correct output ports. Due to the
separate FIFO buffer in each output port, the memory utilization of shared-medium switch
is lower than the shared-memory structure. For a shared-medium switch, the switch size is
limited by the memory read/write access time, within which N incoming and 1 outgoing
cells in a time slot need to be accessed. Suppose the time for a cell slot is Tcell and the
memory access time is Tmem, the number of switch size N can be calculated using the
following equation:

(N + 1) ≤ Tcell

Tmem

Figure 5.9 Shared-medium switching architecture.
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For example, the cell slot time for a 64-byte packet at a 10 G interface is

Tcell = Packetsize

throughput
= (64 × 8)/(10 × 109) = 51.2 ns.

If Tmem = 4 ns, a total of �(51.2/4) − 1 = 11 ports can be supported. In a shared-memory
switch (see Chapter 6), same as shared-medium switches, cells from all the input ports are
time-division multiplexed into the central logic. However, they are not forwarded imme-
diately and flood to all the outputs as in the shared-medium structure. Instead, cells are
buffered in a central memory, and then scheduled to the demultiplexer where cells destined
for different output ports are separated. The shared memory structure is better in memory
utilization than the separate FIFO structure in the shared-medium structure, but requires
twice memory speed.

5.2.2 Space-Division Switching

The space-division switching (SDS) stands for the structure where multiple data paths
are available between the input and the output ports and cells of the different input-output
connections can be forwarded concurrently, when no blocking is present. The total switching
capacity is then the product of the bandwidth of each path and the number of paths that can
transmit cells simultaneously. However, in practice, the capacity of the switch is restricted by
physical implementation constraints such as the device pin count and backplane connections.

The SDS switches are classified based on the number of available paths between any
input–output pair. In single-path switches, only one path exists for any input-output pair,
while in multiple-path switches there is more than one. The former has simpler routing
control than the latter, but the latter has better connection flexibility and fault tolerance.

Single-Path Switches. In Figure 5.8, single path switches are classified into crossbar-
based switches, fully interconnected switches, and banyan-based switches.

Crossbar Switch. A 4 × 4 crossbar switch is shown in Figure 5.10, where horizontal
lines represent the inputs to the switch, and vertical lines represent the outputs.
Basically, an N × N crossbar switch consists of a two-dimensional array of N2 cross-
points, each corresponding to an input–output pair. Each crosspoint has two possible
states: cross (default) and bar. A connection between input port i and output port j
is established by setting the (i, j)th crosspoint switch to the bar state while letting
other crosspoints along the connection remain in the cross state. The bar state of a
crosspoint can be triggered individually by each incoming cell when its destination
matches with the output address. No global information about other cells and their
destinations is required. This property is called the self-routing property, by which
the control complexity is significantly reduced in the switching fabric as the control
function is distributed among all crosspoints. The crossbar switch allows the trans-
ferring of up to N cells with different input ports and different output destinations in
the same time slot.
Crossbar switches have three attractive properties: internally nonblocking, simple in
architecture, and modular. However, its number of the crosspoints grows as a function
of N2. If constructing larger multistage switch with small crossbar switch modules,
the complexity can be improved to O(N log N). There is no internal blocking in a
crossbar switch. As shown in Figure 5.11, there are four requests, input port 1 to
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Figure 5.10 4 × 4 crossbar switch.

output port 3, input port 2 to output port 4, input port 3 to output 1 and input port 4 to
output 3. Except the last request, the first three requests can be switched at the same
time without internal blocking. However, there is a contention between the first and
the last request marked by a dotted circle in Figure 5.11.

Figure 5.11 Switch examples for a 4 × 4 crossbar switch.
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There are several possible locations for the buffers in a crossbar switch, such as (1)
at the crosspoints in the switch fabric, (2) at the inputs of the switch, and (3) at the
inputs and outputs of the switch. Each one has its advantages and disadvantages; they
are detailed in Section 5.3.

Fully interconnected switches. Another kind of single-path space-division switches are
the fully interconnected switches. In a fully interconnected switch, the complete con-
nectivity between inputs and outputs is usually accomplished by means of N separate
broadcast buses from every input port to all output ports, as shown in Figure 5.12.
N separate buffers are required in such a switch, one at each output port. However,
if each of these N output buffers in the fully interconnected switch is partitioned
and dedicated to each input line, yielding N2 dedicated buffers, it becomes topologi-
cally identical with the crosspoint-buffered switch and thus provides exactly the same
performance and implementation complexity.
The fully interconnected switch operates in a similar manner to the shared medium
switch. A cell from any input port is broadcast to every output port. The difference
is that multiple cells from several input ports can be simultaneously broadcasted to
every output port. Therefore, separate cell filters and dedicated buffers, one for each
output port, are required to filter out the misdelivered cells and to temporarily store
the properly destined cells.
Moreover, the fully interconnected switch is different from the shared medium switch
in that the speed-up requirement caused by a sequential transmission over the shared
medium is replaced by space overhead of the total N2 separate broadcast buses. This
is considered a disadvantage of the switch type. The advantages of the fully intercon-
nected switch lie in its simple and nonblocking structure, similar to the crossbar-based
switch.

Banyan-based switches. The banyan-based switches are also the single-path space-
division switches. They are a family of self-routing switches constructed from
2 × 2 switching elements with a single path between any input–output pair. As
shown in Figure 5.13, there are three isomorphic topologies: delta, omega, and

Figure 5.12 A fully interconnected switch.
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Figure 5.13 Three different topologies of banyan-based switches (a) Delta network; (b) Omega
network; (c) Banyan network.

banyan networks, belonging to banyan-based family. All of them offer an equivalent
performance. The detailed description of banyan switches is in Section 5.4.

Multiple-Path Switches. Multiple path switches are classified as augmented banyan
switches, Clos switches, multiplane switches, and recirculation switches, as shown
in Figure 5.14.

Augmented Banyan Switches. In a regular N × N banyan switch, cells pass through
log N stages of switching elements before reaching their destinations. The augmented
banyan switch, as illustrated in Figure 5.14a, refers to the banyan switch that has more
stages than the regular banyan switch. In the regular banyan type switch, once a cell is
deflected to an incorrect link and thus deviates from a predetermined unique path, the
cell is not guaranteed to reach its requested output. Here, in the augmented banyan
switch, deflected cells are provided more chances to be routed to their destinations

Figure 5.14 Multiple-path space-division switches (a) Augmented Banyan; (b) 3-stage clos;
(c) Multiplane; (d) Recirculation.
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again by using later augmented stages. When the deflected cells do not reach their
destinations after the last stage, they will be discarded.
The advantage of the augmented banyan switch is that by adding augmented stages, the
cell loss rate is reduced. The performance of the switch is improved. The disadvantage
of this switch type is its complicated routing scheme. Cells are examined at every
augmented stage to determine whether they have arrived at their requested output
ports. If so, they will be sent to the output interface module. Otherwise, they are routed
to the next stage and will be examined again. Another disadvantage is that the number
of augmented stages needs to be sufficiently large to satisfy desired performance.
Adding each augmented stage to the switch causes increased hardware complexity.
The tandem banyan switch [4] and dual shuffle exchange switch [5] are examples of
the augmented banyan switches.

Three-Stage Clos Switches. The structure of a three-stage Clos switch, as shown in
Figure 5.14b, consists of three stages of switch modules. The first stage is used to
distribute traffic, and in the middle stage, several parallel switch modules are built to
provide multiple paths through the switches, and at last in the third stage cells from
different switch modules of the middle stage are switched to the correct output ports.
More details are described in Section 5.4.

Multiplane Switches. Figure 5.14c shows a multiplane switch. They refer to the switches
that have multiple, usually identical, switch planes. Multiplane switches are mainly
proposed as a way to improve system throughput. By using some mechanisms to
distribute the incoming traffic loading, cell collisions within the switches can be
reduced. Additionally, more than one cell can be transmitted to the same output port
by using each switch plane so the output lines are not necessary to operate at a faster
speed than that of the input lines. Another advantage of the multiplane switches is
that they are used as a means of achieving reliability since the loss of a complete
switch plane will reduce the capacity but not the connectivity of the switches. The
parallel banyan switch and the Sunshine switch [6] are examples of the multiplane
switches.

Recirculation Switches. Recirculation switches, as shown in Figure 5.14d, are designed
to handle the output port contention problem. By recirculating the cells that did
not make it to their output ports during the current time slot back to the input
ports via a set of recirculation paths, the cell loss rate can be reduced. This
results in system throughput improvement. The disadvantage of the recirculation
switches is that they require a larger size switch to accommodate the recirculation
ports. Also, recirculation may cause out-of-sequence errors. Some mechanisms are
needed to preserve the cell sequence among the cells in the same connection. The
representative recirculation switches are the Starlite switch [7] and the Sunshine
switch [6].

5.3 BUFFERING STRATEGY IN SWITCHING FABRICS

Since the burst arrival of traffic are likely to contend for the output ports and/or internal links,
buffers are required to temporarily store cells that lose the contention. Various buffering
strategies are described below.
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Figure 5.15 Shared-memory queuing structure.

5.3.1 Shared-Memory Queuing

The shared-memory queuing structure is shown by Figure 5.15, where a memory unit is used
to store cells from all input ports. The memory contains N logical queues, one per output
port, and each queue stores the cells destined for the corresponding output. It is thus said
the memory is shared by all the output ports and the utilization of memory is maximized.
However, the disadvantage is that in each time slot the memory must accommodate N
concurrent write accesses and N concurrent read accesses, which limits the switch to a
small size. Details are described in Chapter 6.

5.3.2 Output Queuing (OQ)

Another queuing strategy shown in Figure 5.16 is output queuing. Under this structure,
cells are immediately forwarded to the destined output ports once they arrive at the inputs.
Since the arrival rate of each output port is larger than the output line rate, buffers are needed
at the output ports. The output queuing structure benefits from better QoS control ability,
as the destining cells are always available at the output ports to be scheduled based on their
priority levels, allocated bandwidth, and QoS requirements. However, this structure suffers
from memory speed constraint and thus switch size limitation. This is because there can be
up to N cells from different input ports destined for the same output port at the same cell
time. The memory utilization is not as good as the shared-memory queuing’s.

Figure 5.16 Output queuing structure.
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Figure 5.17 Input queuing structure.

5.3.3 Input Queuing

Due to the switch size limitation of the output queuing structure, the input queuing structure
has attracted much more attention in recent years. As shown in Figure 5.17, pure input
queuing has one FIFO queue per input port to buffer cells. A scheduling algorithm is
required to match input ports with output ports in each time slot, as only one cell heading
to an output port can be forwarded per time slot. One problem of input queuing is the so-
called head-of-line (HOL) blocking. For instance, in Figure 5.18 input port 0 cannot send
its head-of-line cell to output port 2 because of losing output contention to input port 3.
However, the cell queued at input port 0 behind the HOL cell cannot be transmitted even if
the destined output port 1 is idle. This severely degrades the switch throughput. It is proved
that under uniform traffic arrival, the throughput of an input buffered switch is at most 58.6
percent [8, 9]. Several solutions such as channel grouping and windowing were proposed
to increase the throughput.

5.3.4 Virtual Output Queuing (VOQ)

To eliminate HOL blocking, the virtual output queuing (VOQ) structure has been
widely used. In Figure 5.19, same as the input queuing structure, cells are buffered at
input ports. But the input buffer is divided into N logical queues, called VOQ, storing the
cells destined for the associated output port. The HOL cell of each VOQ is scheduled in
current cell time, comparing to the input queuing structure, only one HOL cell of each input
can be forwarded. However, since the logical queue number is N times the input queuing
structure, scheduling algorithm is much more sophisticated. It was a very hot research topic,
and many scheduling algorithms have been proposed [1, 10–13]. The main function is to

Figure 5.18 HOL blocking in input queuing structure.
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Figure 5.19 VOQ structure.

select an input–output matching from an N × N request matrix. Both delay/throughput per-
formance and implementation complexity must be considered. More details can be found
in Chapter 7.

5.3.5 Combined Input and Output Queuing

Another way to alleviate HOL blocking is to allow each output port to receive more than
one cell in each time slot. That is to have the switch fabric operate S times of the line rate,
where 1 < S < N . Since the switch fabric operates faster than line rate, buffers must be
placed at input and output ports to cope with the speed discrepancy between the line rate
and the switch fabric speed.

In the original combined input and output queuing space (CIOQ) structure shown in
Figure 5.20, each input and output port has a FIFO queue. It is proved that with a speedup
of four, the CIOQ switch can achieve 99 percent throughput under independent uniform
input traffic [14, 15].

An improved CIOQ structure [16, 17], shown in Figure 5.21, has N VOQ queues in
the input buffer, while each output port still has a single FIFO queue. It is proved that
under a slightly constrained traffic, this CIOQ structure can emulate a FIFO output queue
(FIFO-OQ) switch with a speedup of 2 with bounded delay difference [18]. Note that
the FIFO-OQ switch provides the best delay/throughput. More details can be found in
Chapter 7.

Figure 5.20 Combined input and output queuing structure with FIFO queue.
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Figure 5.21 Combined input and output queuing structure with VOQ.

Figure 5.22 Crosspoint buffered crossbar structure.

5.3.6 Crosspoint Queuing

For a crossbar switch fabric, a buffer can be placed at each crosspoint, as shown in Fig-
ure 5.22. Incoming cells are first placed in the corresponding crosspoint buffer (XB), waiting
to be transmitted to the output ports. An arbitrator of each output selects a cell among the
XBs on the same column based on some scheduling scheme, for example, round-robin. This
switch can achieve the same performance as the OQ switches because of no HOL blocking.
However, since there are N2 discrete buffers, the sharing effect is very poor. With limited
chip space, only a few cells can be implemented. As a result, this switch usually combines
VOQs at each input. Details can be found in Chapter 11.

5.4 MULTIPLANE SWITCHING AND MULTISTAGE SWITCHING

A large-scale switch is usually built with multiple switch modules (either in chips or boards)
interconnected in a different structures. They are partitioned into single-stage or multistage
switches.
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Figure 5.23 Parallel packet switching structure with crossbar.

Parallel Packet Switch. Figure 5.23 shows a single-stage switch fabric with multiple
identical switch modules connected in parallel, which is called parallel packet switch (PPS)
[19–21]. As a cell stream enters the switching fabric, it is distributed to K parallel planes.
The challenging issue is how to find K cells from the N VOQs in each time slot such that the
throughput is maximized. Since the center switch fabric does not have buffers, there shall
be no cell out of order concern. It is proved that given a speedup of 2, the PPS structure can
emulate a first-come-first-serve (FCFS) output-queued (OQ) switch; given a speedup of 3,
the PPS can emulate any QoS queuing discipline, and even with no speedup, the PPS can
mimic the FCFS OQ switch within a delay bound.

However, since the PPS use single-stage switch fabric, it cannot support large port count,
while multi-stage switching can [22, 23]. The multistage switch structures connect the input
and output ports in multiple stages and can be divided into two categories. One is the fully
connected multistage network, where in every two adjacent stages, each module in the
first stage connects to every module in the next stage. The other is the partially connected
multistage network, where each module in the first stage only connects to a subset of the
modules in the next stage.

Banyan-Based Switch. An example of the partially connected multistage network is the
banyan network as shown in Figure 5.24. A typical example of the fully connected multistage
structure is the Clos switch structure, as shown in Figure 5.25.

An N × N banyan network consists of logb N stages of b × b switching elements. Each
stage has multiple b × b switching elements whose inputs and outputs are labeled 0 to b − 1.
The interstage connection patterns are such that only one path exists between any input of
the first stage and any output of the last stage.

The banyan network has self-routing capability. When a cell enters in one of the input
ports, it uses the output address as the routing information when traversing all the stages.
For example, in Figure 5.24, a cell in input port 1 destined for output port 2, (‘010’) is
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Figure 5.24 Banyan switching structure.

Figure 5.25 Clos switching structure.

rounded to the top link (0) of the first switch element, to the down link (1) of the second
switch element, and to the top link (0) of the third switch element.

The banyan-based switch provides several advantages. It has fewer switch elements than
the crossbar-based and the fully interconnected switch, O(N log N) versus O(N2). Self-
routing property is also an attractive feature in that no control mechanism is needed for
routing cells. Routing information is contained within each cell and it is used while the cell
is routed along the path.

However, the main drawback of the banyan-based switch is that it is an internally blocking
switch. Its performance degrades rapidly as the size of the switch increases. The performance
may be improved if layer switching elements are employed (i.e., b > 2). This leads to the
class of delta-based switches.
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Clos-Network Switch. A crossbar switch is strictly nonblocking in that a path is always
available to connect an idle input port to an idle output port. This is not always true for the
Clos switch. Figure 5.26 shows a three-stage Clos switch with N = 9, n = 3, and m = 3. The
bold lines indicate the existing connections. It can be seen that input port 9 cannot be con-
nected to either output port 4 or 6, even though both of these output lines are idle. However,
by rearranging the existing connections, the new connection request can be accommodated.
Thus, the Clos network is rearrangably nonblocking.

By increasing the value of m (the number of middle-stage switch modules), the prob-
ability of blocking is reduced. To find the value of m needed for a strictly nonblocking
three-stage switch, let us refer to Figure 5.27.

Figure 5.26 Example of internal blocking in a three-stage Clos switch.

Figure 5.27 Nonblocking condition for a three-stage Clos switch.
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We wish to establish a path from input port a to output port b. The worst case situation
for blocking occurs if all of the remaining n − 1 input lines and n − 1 output lines are
busy and are connected to different middle-stage switch modules. Thus a total of (n − 1) +
(n − 1) = 2n − 2 middle-stage switch modules are unavailable for creating a path from a
to b. However, if one more middle-stage switch module exists, an appropriate link must be
available for the connection. Thus, a three-stage Clos switch will be nonblocking if

m ≥ (2n − 2) + 1 = 2n − 1

The total number of crosspoints Nx in a three-stage Clos switch when it is symmetric
(i.e., m = k) is

Nx = 2Nm + m

(
N

n

)2

Substituting m = 2n − 1 into Nx , we obtain

Nx = 2N(2n − 1) + (2n − 1)

(
N

n

)2

for a nonblocking switch. For a large switch size, n is large. We can approximate

Nx � 2N(2n) + 2n

(
N

n

)2

= 4Nn + 2

(
N2

n

)

To optimize the number of crosspoints, differentiate Nx with respect to n and set the
result to 0. The result will be n � (N/2)1/2. Substituting into Nx ,

Nx = 4
√

2N3/2 = O(N3/2)

The three-stage Clos switch provides an advantage in that it reduces the hardware com-
plexity from O(N2) in the case of the crossbar switch to O(N3/2) while the switch could
be designed to be nonblocking. Furthermore, it also provides more reliability since there
is more than one possible path through the switch to connect any input port to any output
port. The main disadvantage of this switch type is that some fast and intelligent mechanism
is needed to rearrange the connections in every time slot so that internal blocking can be
avoided. This would be the bottleneck when the switch size becomes large. In practice, it is
difficult to avoid the internal blocking although the switch itself is nonblocking. Once the
contention on the internal links occurs, the throughput is degraded. This can be improved
by either increasing the number of internal links between switch modules or increasing
the bandwidth of internal links so that more than one cell from the input module that are
destined to the same third-stage module can be routed.

5.5 PERFORMANCE OF BASIC SWITCHES

This section describes performance of three basic switches: input-buffered, output-buffered,
and completely shared-buffer.
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5.5.1 Traffic Model

Bernoulli Arrival Process and Random Traffic. Cells arrive at each input in a
slot-by-slot manner. Under Bernoulli arrival process, the probability that there is a cell
arriving in each time slot is identical and is independent of any other slot. This probability
is referred as the offered load of the input. If each cell is equally likely to be destined for
any output, the traffic becomes uniformly distributed among the switch.

Consider the FIFO service discipline at each input. Only the HOL cells contend for
access to the switch outputs. If every cell is destined for a different output, the switch fabric
allows each to pass through to its respective output. If k HOL cells are destined for the same
output, one is allowed to pass through the switch, and the other k − 1 must wait until the
next time slot. While one cell is waiting its turn for access to an output, other cells may be
queued behind it and blocked from possibly reaching idle outputs. A Markov model can
be established to evaluate the saturated throughput when N is small.2 When N is large,
the slot-by-slot number of HOL cells destined for a particular output becomes a Poisson
process. As described in Section 5.5.2, the HOL blocking limits the maximum throughput
to 0.586 when N → ∞.

On–Off Model and Bursty Traffic. In the bursty traffic model, each input alternates
between active and idle periods of geometrically distributed duration. Figure 5.28 considers
an on–off source model in which an arrival process to an input port alternates between on
(active) and off (idle) periods. A traffic source continues sending cells in every time slot
during the on period, but stops sending cells in the idle period. The duration of the active
period called a burst is determined by a random variable X ∈ {1, 2, . . .}, which is assumed to
be geometrically distributed with a mean of β cells (i.e., the mean burst length). Similarly,
the duration of the off period is determined by a random variable Y ∈ {0, 1, 2, . . .}, which
is also assumed to be geometrically distributed with a mean of α cells. Define q as the
probability of starting a new burst (on period) in each time slot, and p as the probability of
terminating a burst. Cells arriving at an input port are assumed to be destined for the same
output. Thus, the probability that the on period lasts for a duration of i time slots is

Pr{X = i} = p(1 − p)i−1, i ≥ 1

and we have the mean burst length

β = E[X] =
∞∑

i=1

i Pr{X = i} = 1/p.

Figure 5.28 On–off source model.

2Consider the state as the different destination combinations among the HOL cells.
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The probability that an off period lasts for j time slots is

Pr{Y = j} = q(1 − q)j−1, j ≥ 0

and we have

α = E[Y ] =
∞∑

j=0

j Pr{Y = j} = (1 − q)/q.

The offered load ρ is the portion of time that a time slot is active:

ρ = 1/p

1/p +∑∞
j=0 jq(1 − q)j

= q

q + p − pq
.

5.5.2 Input-Buffered Switches

We consider first-in-first-out (FIFO) buffers in evaluating the performance of input queuing.
We assume that only the cells at the head of the buffers can contend for their destined outputs.
If there are more than one cell contending the same output, only one of them is allowed
to pass through the switch and the others have to wait until the next time slot. When a
head-of-line (HOL) cell loses contention, at the same moment it may also block some cells
behind it to reach idle outputs. As a result, the maximum throughput of the switch is limited
and cannot be 100 percent.

To determine the maximum throughput, we assume that all the input queues are saturated.
That is, there are always cells waiting in each input buffer, and whenever a cell is transmitted
through the switch, a new cell immediately replaces it at the head of the input queue. If
there are k cells waiting at the heads of input queues addressed to the same output, one of
them will be selected at random to pass through the switch. In other words, each of the
head-of-line (HOL) cells has equal probability (1/k) of being selected.

Consider all N cells at the heads of input buffers at time slot m. Depending on the
destinations, they can be classified into N groups. Some groups may have more than one
cell, and some may have none. For those which have at least a cell, one of the cells will be
selected to pass through the switch, and the remaining cells have to stay until the next time
slot. Denote Bi

m as the number of remaining cells destined for output i in the mth time slot,
and Bi the random variable in the steady state [8, 9]. Also denote Ai

m as the number of cells
moving to the heads of the input queues during the mth time slot and destined for output i,
and Ai the corresponding steady-state random variable. Note that a cell can only move to
the head of an input queue if the HOL cell in the previous time slot was removed from that
queue for transmission to an output. Hence, the state transition of B i

m can be represented by:

B i
m = max

(
0, Bi

m−1 + Ai
m − 1

)
. (5.1)

We assume that each new cell arrival to the head of an input queue has the equal probability
1/N of being destined for any given output. As a result, Ai

m has the following binomial
distribution:

Pr
[
Ai

m = k
] =

(
Fm−1

k

)
(1/N)k (1 − 1/N)Fm−1−k ,

k = 0, 1, . . . , Fm−1, (5.2)
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where

Fm−1
�= N −

N∑
i=1

B i
m−1. (5.3)

Fm−1 represents the total number of cells transmitted through the switch during the (m − 1)st
time slot, which in saturation is equal to the total number of input queues which have a new
cell moving into the HOL position in the mth time slot. That is,

Fm−1 =
N∑

i=1

Ai
m. (5.4)

When N → ∞, Ai
m has a Poisson distribution with rate ρi

m = Fm−1/N . In steady state,
Ai

m → Ai also has a Poisson distribution. The rate is ρ0 = F/N , where F is the average
of the number of cells passing through the switch, and ρ0 is the utilization of output lines
(i.e., the normalized switch throughput). The state transition of Bi is driven by the Markov
process same as the M/D/1 queues in the steady state. Using the results for the mean
steady-state queue size for an M/D/1 queue, for N → ∞ we have

Bi = ρ2
0

2(1 − ρ0)
. (5.5)

In the steady state, (5.3) becomes

F = N −
N∑

i=1

Bi. (5.6)

By symmetricity, Bi is equal for all i. In particular,

Bi = 1

N

N∑
i=1

Bi = 1 − F

N
= 1 − ρ0. (5.7)

It follows from (5.5) and (5.7) that ρ0 =
(

2 − √
2
)

= 0.586.
When N is finite and small, the switch throughput can be calculated by modeling the

system as a Markov chain. The numerical results are given in Table 5.1. Note that the
throughput rapidly converges to 0.586 as N increases.

The results also imply that, if the input rate is greater than 0.586, the switch will become
saturated, and the throughput will be 0.586. If the input rate is less than 0.586, the through-
put will be 100 percent, and every cell will get through the switch after some delay. To
characterize the delay, a discrete-time Geom/G/1 queuing model can be used to obtain an
exact formula of the expected waiting time for N → ∞.

The result is based on the following two assumptions: (1) The arrival process to each
input queue is a Bernoulli process. That is, the probability that a cell arrives in each time
slot is identical and independent of any other slot. We denote this probability as p, and
call it the offered load. (2) Each cell is equally likely to be destined for any one output.
The ‘service time’ for a cell at the head of line consists of the waiting time until it gets
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TABLE 5.1 The Maximum Throughput Achievable
Using Input Queuing with FIFO Buffers

N Throughput

1 1.0000
2 0.7500
3 0.6825
4 0.6553
5 0.6399
6 0.6302
7 0.6234
8 0.6184
∞ 0.586

selected, plus one time slot for its transmission through the switch. As N → ∞, and in
the steady state, the number of cells arriving to the heads of input queues, and addressed
to a particular output (say j) has the Poisson distribution with rate p. Hence, the ser-
vice time distribution for the discrete-time Geom/G/1 model is the delay distribution of
another queuing system: a discrete-time M/D/1 queue with customers served in random
order.

Using standard results for a discrete-time Geom/G/1 queue, we obtain the mean cell
waiting time for input queuing with FIFO buffers

W = pS (S − 1)

2
(
1 − pS

) + S − 1, (5.8)

where S is the random variable of the service time obtained from the M/D/1 model. The
mean cell waiting time for input queuing with FIFO buffers is computed and shown in
Figure 5.29 for N → ∞.

5.5.3 Output-Buffered Switches

With output queuing, cells are only buffered at outputs, at each of which a separate FIFO is
maintained. Consider a particular (i.e., tagged) output queue. Define the random variable A
as the number of cell arrivals destined for the tagged output in a given time slot. In [8, 9],
based on the same assumptions as in Section 5.5.2 on the arrivals, we have

ak
�= Pr[A = k] =

(
N

k

)
( p/N)k (1 − p/N)N−k , k = 0, 1, 2, . . . . (5.9)

When N → ∞, (5.9) becomes

ak
�= Pr[A = k] = pke−p

k!
k = 0, 1, 2, . . . , N = ∞ (5.10)

Denote Qm as the number of cells in the tagged queue at the end of the mth time slot, Am

the number of cell arrivals during the mth time slot, and b the capacity of the output buffer,
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Figure 5.29 The mean waiting time for input queuing with FIFO buffers for the limiting case for
N = ∞.

we have

Qm = min{max (0, Qm−1 + Am − 1) , b}. (5.11)

If Qm−1 = 0 and Am > 0, there is no cell waiting at the beginning of the mth time slot,
but we have Am cells arriving. We assume that one of the arriving cells is immediately
transmitted during the mth time slot; that is, a cell goes through the switch without any
delay.

For finite N and finite b, this can be modeled as a finite-state, discrete-time Markov chain
with state transition probabilities Pij

�= Pr[Qm = j | Qm−1 = i] in the following:

Pij =




a0+1 i = 0, j = 0

a0 1 ≤ i ≤ b, j = i − 1

aj−i+1 1 ≤ j ≤ b − 1, 0 ≤ i ≤ j
N∑

m=j−i+1

am j = b, 0 ≤ i ≤ j

0 otherwise

(5.12)

where ak is given by (5.9) and (5.10) for a finite N and N → ∞, respectively. The steady-
state queue size can be obtained recursively from the following Markov chain balance
equations:


q1

�= Pr[Q = 1] = (1 − a0 − a1)

a0
· q0

qn
�= Pr[Q = n] = (1 − a1)

a0
· qn−1 −

n∑
k=2

ak

a0
· qn−k , 2 ≤ n ≤ b,
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where

q0
�= Pr[Q = 0] = 1

1 +
b∑

n=1

qn/q0

.

No cell will be transmitted on the tagged output line during the mth time slot if, and only
if, Qm−1 = 0 and Am = 0. Therefore, the switch throughput ρ0 is represented as:

ρ0 = 1 − q0a0.

A cell will be lost if, when emerging from the switch fabric, it finds the output buffer already
containing b cells. The cell loss probability can be calculated as follows:

Pr[cell loss] = 1 − ρ0

p
,

where p is the offered load.
Figures 5.30a and 5.30b show the cell loss probability for output queuing as a function

of the output buffer size b for various switch size N and offered loads p = 0.8 and 0.9. At
the 80 percent offered load, a buffer size of b = 28 is good enough to keep the cell loss
probability below 10−6 for arbitrarily large N . The N → ∞ curve can be a close upper
bound for finite N > 32. Figure 5.31 shows the cell loss performance when N → ∞ against
the output buffer size b for offered loads p varying from 0.70 to 0.95.

Output queuing achieves the optimal throughput-delay performance. Cells are delayed
unless it is unavoidable when two or more cells arriving on different inputs are destined
for the same output. With Little’s result, the mean waiting time W can be obtained as
follows:

W = Q

ρ0
=

b∑
n=1

nqn

1 − q0a0
·

Figure 5.32 shows the numerical results for the mean waiting time as a function of
the offered load p for N → ∞ and various values of the output buffer size b. When
N → ∞ and b → ∞, the mean waiting time is obtained from the M/D/1 queue as
follows:

W = p

2 (1 − p)
.

5.5.4 Completely Shared-Buffered Switches

With completely buffer sharing, all cells are stored in a common buffer shared by all
inputs and outputs. One can expect that it will need less buffer to achieve a given cell loss
probability, due to the statistical nature of cell arrivals. Output queuing can be maintained
logically with linked lists, so that no cells will be blocked from reaching idle outputs, and
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Figure 5.30 Cell loss probability for output queuing as a function of the buffer size b and the switch
size N , for offered loads (a) p = 0.8 and (b) p = 0.9.

we still can achieve the optimal throughput-delay performance as with dedicated output
queuing.

In the following, we will take a look on how it improves the cell loss performance.
Denote Q i

m as the number of cells destined for output i in the buffer at the end of the mth
time slot. The total number of cells in the shared buffer at the end of the mth time slot is∑N

i=1 Q i
m. If the buffer size is infinite, then

Qi
m = max

{
0, Qi

m−1 + Ai
m − 1

}
, (5.13)
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Figure 5.31 Cell loss probability for output queuing as a function of the buffer size b and offered
loads varying from p = 0.70 to p = 0.95, for the limiting case of N = ∞.

where Ai
m is the number of cells addressed to output i that arrive during the mth time

slot.
With a finite buffer size, cell arrivals may fill up the shared buffer and the resulting buffer

overflow makes (5.13) only an approximation. However, we are only interested in the region
of low cell loss probability (e.g., less than 10−6), in which this approximation is still good.

Figure 5.32 Mean waiting time for output queuing as a function of the offered load p, for N = ∞
and output FIFO sizes varying from b = 1 to b = ∞.
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Figure 5.33 Cell loss probability for completely shared buffering as a function of the buffer size
per output b and the switch size N , for offered loads (a) p = 0.8 and (b) p = 0.9.

When N is finite, Ai, which is the number of cell arrivals destined for output i in the
steady state, is not independent of A j ( j �= i). This is because, at most N cells arrive to
the switch, and a large number of cells arriving for one output implies a small number for
the remaining outputs. As N goes to infinity, however, Ai becomes an independent Poisson
random variable (with mean value p). Then, Q i, which is the number of cells in the buffer
that are destined for output i in the steady state also becomes independent of Qj ( j �= i). We
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will use the Poisson and independence assumption for finite N . These the approximations
are good for N ≥ 16.

Therefore we model the steady-state distribution of
∑N

i=1 Q i, the number of cells in
the buffer, as the N fold convolution of N M/D/1 queues. With the assumption of an
infinite buffer size, we then approximate the cell loss probability by the overflow probability
Pr
[∑N

i=1 Q i ≥ Nb
]
. Figure 5.33a and 5.33b show the numerical results.
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