
Book1099 — “c03” — 2007/2/15 — 18:47 — page 77 — #1

CHAPTER 3

PACKET CLASSIFICATION

3.1 INTRODUCTION

Traditionally, Internet routers only provide best effort service by processing each incoming
packet in the same manner. With the emergence of new applications, Internet Service
Providers (ISPs) would like routers to provide different QoS levels to different applica-
tions. To meet these QoS requirements, routers need to implement new mechanisms, such
as admission control, resource reservation, per-flow queuing, and fair scheduling. How-
ever, a prerequisite to deploying these mechanisms is that the router is able to distinguish
and classify the incoming traffic into different flows. We call such routers flow-aware
routers. A flow-aware router is distinguished from a traditional router in that it is capa-
ble of keeping track of flows passing by and applying different classes of service to
each flow.

Flows are specified by rules and each rule consists of operations comparing packet fields
with certain values. We call a set of rules a classifier, which is formed based on the criteria to
be applied to classify packets with respect to a given network application. Given a classifier
defining packet attributes or content, packet classification is the process of identifying the
rule or rules within this set to which a packet conforms or matches [1]. To illustrate the
kinds of services that could be provided by a flow-aware router with packet classification
capability, we use an example classifier shown in Table 3.1. Assume this classifier is stored
in the router R in the example network shown in Figure 3.1.

High Performance Switches and Routers, by H. Jonathan Chao and Bin Liu
Copyright © 2007 John Wiley & Sons, Inc.

77

Book1099 — “c03” — 2007/2/15 — 18:47 — page 78 — #2

78 PACKET CLASSIFICATION

TABLE 3.1 Classifier Example

Network-Layer Transport-Layer
Application-Layer

Rule Destination Source Protocol Destination Protocol Action

R1 128.238/16 * TCP = telnet * Deny
R2 176.110/16 196.27.43/24 UDP * RTP Send to port III
R3 196.27.43/24 134.65/16 TCP * * Drop traffic if

rate > 10 Mbps
R4 * * * * * Permit

Figure 3.1 Network example with classifier.

With only four rules in the example classifier, the router X provides the following
services:

Packet Filtering. Rule R1 blocks all telnet connections from outside into Net A, which
may be a private research network.

Policy Routing. Rule R2 enables the router to forward all real-time traffic using real-time
transport protocol (RTP) in the application layer from Net B to Net D through the
ATM network at the bottom of Figure 3.1.

Traffic Policing. Rule R3 limits the total transmission control protocol (TCP) traffic rate
from Net C to Net B up to 10 Mbps.

A formal description of the rule, classifier, and packet classification is given in the work
of Lakshman and Stiliadis [2]. We will use these symbols and terminologies throughout
this chapter.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 79 — #3

3.1 INTRODUCTION 79

Figure 3.2 Packet classification [11].

1. A classifier C consists of N rules, Rj, 1 ≤ j ≤ N , where Rj is composed of three
entities:

(a) A regular expression Rj[i], 1 ≤ i ≤ d, on each of the d header fields of a packet.

(b) A number, Pri(Rj), indicating the priority of the rule in the classifier.

(c) An action, referred to as Action(Rj).

2. An incoming packet P with the header considered as a d-tuple (P1, P2, . . . , Pd) is said
to match Rj, if and only if, Pi matches Rj[i], where 1 ≤ i ≤ d.

3. Given an incoming packet P and thus the d-tuple, the d-dimensional packet classifi-
cation problem is to find the rule Rm with the highest priority among all the rules Rj

matching the d-tuple. As shown in Figure 3.2, a packet header, consisting of IP source
address (32 bits), destination address (32 bits), source port number (16 bits), destina-
tion port number (16 bits), and protocol type (8 bits)1, is used to match the rule(s) in
the classifier. The one with the highest priority is chosen and its corresponding action
is applied to the packet.

In the example classifier shown in Table 3.1, each rule has five regular expressions on five
packet-header fields from network layer to application layer. Each expression could be a
simple prefix/length or operator/number specification. The prefix/length specification has
the same definition as in IP lookups, while the operator/number could be more general, such
as equal 23, range 256–1023, and greater than 1023. Furthermore, a wildcard is allowed to
be inserted to match any value. Note that R4 in Table 3.1 matches with any incoming packet
due to its ‘all-wildcards’ specification, which means the priorities of rules take effect when
a packet matches both R4 and the other rules.

Suppose there is a rule set C = Rj(1 ≤ j ≤ N) and each rule Rj has d fields. The fields
are labeled as Fi(1 ≤ i ≤ d) and Rj is denoted as 〈Rj1, Rj2, . . . , Rjd〉. Table 3.2 shows an
example classifier with seven rules in four fields. The first two fields, F1 and F2, are specified
in prefixes and the last two fields, F3 and F4, are specified in ranges. The last column shows
the action associated with the rules. F1 and F2 can be handled more efficiently by using tries
or TCAM as in Chapter 2. On the other hand, F3 and F4 can be handled more efficiently

1Herein, the classification is for IPv4 scenario only.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 80 — #4

80 PACKET CLASSIFICATION

TABLE 3.2 Example Classifier with Seven Rules in
Four Fields

Rule F1 F2 F3 F4 Action

R1 00* 110* 6 (10, 12) Act0
R2 00* 11* (4, 8) 15 Act1
R3 10* 1* 7 9 Act2
R4 0* 01* 10 (10, 12) Act1
R5 0* 10* (4, 8) 15 Act0
R6 0* 1* 10 (10, 12) Act3
R7 * 00* 7 15 Act1

by projecting the numbers into different ranges and then performing range lookup, to be
described in later sections of this chapter. The seven rules are listed in the order of descending
priorities, that is, R1 has the highest priority. This rule set will be used to illustrate some of
the algorithms described later.

Several performance metrics [3] are used to compare and analyze packet classification
algorithms:

Search Speed. High-speed links require fast classification. For example, assuming a
minimum-sized 40-byte IP packet, links running at 10 Gbps can carry 31.25 million
packets per second (mpps). The classification time is limited to 32 ns.

Storage Requirement. Small storage means fast memory access speed and low power
consumption, which are important for cache-based software algorithms and SRAM-
based hardware algorithms.

Scalability in Classifier Size. The size of the classifier depends on the applications.
For a metro/edge router performing microflow recognition, the number of flows is
between 128k and 1 million. Obviously, this number increases as the link speed
increases.

Scalability in the Number of Header Fields. As more complex services are provided,
more header fields need to be included.

Update Time. When the classifier changes, such as an entry deletion or insertion, the
data structure needs to be updated. Some applications such as flow-recognition
require the updating time to be short. Otherwise, the performance of classification is
degraded.

Flexibility in Specification. The ability of an algorithm to handle a wide range of rule
specifications, such as prefix/length, operator/number, and wildcards, enables it to
be applied to various circumstances.

Linear search is the simplest algorithm for packet classification. The rule set can be
organized into an array or a linked list in order of increasing costs. Given an incoming packet
header, the rules are examined one by one until a match is found. For a N-rule classifier,
both the storage and query time complexity are O(N), making this scheme infeasible for
large rule sets.

Many efficient packet classification schemes have been proposed and are described in
the following sections.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 81 — #5

3.2 TRIE-BASED CLASSIFICATIONS 81

3.2 TRIE-BASED CLASSIFICATIONS

3.2.1 Hierarchical Tries

Hierarchical trie is a simple extension of a one-dimension trie to a multiple-dimension trie,
with each dimension representing a field. It is also called multi-level tries, backtracking-
search tries, or trie-of-tries [3].

Rule Storing Organization. A two-dimensional hierarchical trie representing the first
two fields of rule set C in Table 3.2 is shown in Figure 3.3. Here, we only consider F1 and
F2 because they are prefixes and can be easily processed by using tries. The ellipse nodes
belong to the F1-trie and round nodes belong to F2-tries. The bold curved arrow denotes the
next-trie pointer. Note that there are four F2-tries because we have four distinct prefixes in
the F1 field of C. Each gray node is labeled with a rule Rj, which means that if this node is
reached during a search, Rj is matched. In general, the hierarchical trie can be constructed
as follows: a binary radix trie, called F1-trie is first built for the set of prefixes {Rj1} that
belong to F1 of all the rules. Secondly, for each prefix p in the F1-trie, a (d − 1)-dimensional
hierarchical trie Tp is recursively constructed for those rules that exactly specify p in F1,
that is, the set of rules {Rj|Rj1 = p}. Trie Tp is connected to p by a next-trie pointer stored
in node p.

Classification Scheme. Classification for an incoming packet with the header
(v1, v2, . . . , vd) should be carried out in the following procedure: The query algorithm
traverses the F1-trie based on v1; if a next-trie pointer is encountered, the algorithm goes
on with the pointer and queries the (d − 1)-dimensional hierarchical trie recursively.

For the above rule set C, given an incoming packet (001, 110), the search process starts
from the F1-trie to find the best matching prefix of ‘001’. After node ‘D’ in the F1-trie is
reached, the next-trie pointer is used to guide the search into the F2-trie to find all matching
prefixes of ‘110’. Apparently, both node R1 and node R2 are reached; however, only R1 is
recorded due to its higher priority. Now the search process backtracks to node ‘B’, which
is the lowest ancestor of node ‘D’ in the F1-trie. Again, we use the next-trie pointer here to

Figure 3.3 Hierarchical trie data structure for F1 and F2 of the rule set in Table 3.2.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 82 — #6

82 PACKET CLASSIFICATION

search the F2-trie. This procedure is repeated until no ancestor node of node ‘D’ is available
to be searched. In this example, the search process ends up at node x and the entire traversing
path is depicted by the dashed line in Figure 3.3. During this traversal, three matches are
found, R1, R2, and R6. R1 is returned as the highest priority rule matched. The backtracking
process is necessary since ‘001’ of the incoming packet may match several prefixes in
the first field and we have no knowledge in advance which F2-trie contains prefix(es) that
match ‘110’. Furthermore, all matches must be found to ensure that the highest priority one
is returned.

Performance Comments. Hierarchical trie is one of most storage-economic algorithms.
For a N-rule set, each of which is with d sub-fields and the maximum field length of each
field is W , then the storage complexity is O(dW). The data structure is straightforward
and easy to maintain at the expenses of a longer searching time. Traversing the trie brings
backtracking in an attempt to find all the matching rules since the priority level cannot be
effectively reflected by this data structure. The search time complexity is O(Wd). Fd-trie
has a depth of W and thus takes O(W) to search. Fd−1-trie also has a depth of W , where
each node has a Fd-trie. The worst-case search time for the Fd−1-trie is thus O(W2). With
induction, the time complexity becomes O(Wd). Incremental updates can be implemented
in O(d2W) because each field of the updated rule is stored in exactly one location at F
maximum depth O(dW).

3.2.2 Set-Pruning Trie

The set-pruning trie is a modified version of the hierarchical trie. Backtracking is avoided
during the query process in a set-pruning trie.

Rule Storing Organization. In a set-pruning trie, each trie node (with a valid prefix)
duplicates all rules in the rule sets of its ancestors into its own rule set and then constructs
the next dimension trie based on the new rule set.

An example of the 2-dimensional set-pruning trie denoting F1 and F2 fields of the rule
set C (Table 3.2) is shown in Figure 3.4. Note that in Figure 3.3 the rule sets of F1-trie node
A, B, and D are {R7}, {R4, R5, R6}, and {R1, R2}, respectively. While in Figure 3.4, they are
{R7}, {R4, R5, R6, R7}, and {R1, R2, R4, R5, R6, R7}, where rules have been duplicated.

Classification Scheme. The search process for a d-tuple consists of d consecutive
longest prefix matching on each dimension of the set-pruning trie. Given a 2-tuple
(001, 110), the query path is depicted by the dashed line in Figure 3.4. R1 is returned
as the highest priority rule matched. Multiple rules may be encountered along the path and
the one with the highest priority is recorded. The R2 node on the path is supposed to include
rules R2 and R6, but only R2 is kept due to its higher priority.

Performance Comments. Hierarchical trie needs backtracking because the rule sets
associated with the F1-trie nodes are disjointed with each other. The set-pruning trie elim-
inates this need and decreases the query time complexity to only O(dW) at the cost of
increased storage complexity, O(NddW), since a rule may need to be duplicated up to Nd

times. The update complexity is also O(Nd).

Book1099 — “c03” — 2007/2/15 — 18:47 — page 83 — #7

3.2 TRIE-BASED CLASSIFICATIONS 83

Figure 3.4 Set-pruning trie data structure for the rule set in Table 3.2.

3.2.3 Grid of Tries

Srinivansan et al. [4] proposed the grid-of-tries data structure for 2D (2-dimensional) classi-
fication, which reduces the storage complexity to O(NdW), as in the hierarchical trie, while
still keeping the query time complexity at O(dW) by pre-computing and storing the so-
called switching pointers in some F2-trie nodes. It is mentioned above that the F1-trie node
of the set-pruning trie duplicates rules belonging to its ancestors. This procedure could also
be interpreted that the F1-trie node merges the F2-tries of its ancestors into its own F2-trie.
For instance, R7 in F2-trie of node A in Figure 3.4 is duplicated three times. Assuming that
the F2-trie belonging to node B is denoted as F2-B-trie, the only difference between the two
F2-B-tries in Figures 3.3 and 3.4 is that node R7 is duplicated in the set-pruning trie. Now
instead of node duplication, a switching pointer labeled with ‘0’ is incorporated at node x′
and points to node R7 in the F2-A-trie as shown in Figure 3.5. The switching pointers are
depicted by the dashed curved arrows. In fact, the switching pointer labeled ‘0’ at node x′
replaces the 0-pointer in the set-pruning trie.

If the hierarchical trie and set-pruning trie have been built for a classifier C, the grid-
of-tries structure of C could be constructed by adding switching pointers to the F2-tries of
the hierarchical trie with comparison to that of the set-pruning trie. A switching pointer, ps,
labeled with 0/1 is inserted at node y whenever its counterpart in the set-pruning trie contains
a 0/1-pointer to another node z while y does not. Node z may have several counterparts in
the hierarchical trie, but ps points to the one contained in the F2-trie that is ‘closest’ to the
F2-trie containing node y. For instance, node x and node x′ in Figures 3.4 and 3.5 are both
counterparts of node x′′ in Figure 3.4. However, the switching pointer at node y points to
node x′ since node B is closer to node D than node A. If the switching pointers are viewed
the same as 0/1-pointers, the query procedure is identical as in the set-pruning trie.

The grid-of-tries structure performs well on both query time and storage complexity, but
incremental updates are complex since several pointers may point to a single node. If the
node is to be removed, a new node needs to be created and the pointers need to be updated
to point to the new node.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 84 — #8

84 PACKET CLASSIFICATION

Figure 3.5 Example of the grid-of-tries structure for the rule set in Table 3.2.

3.2.4 Extending Two-Dimensional Schemes

Baboescu et al. [5] introduced a novel classification method EGT-PC for core routers. The
key idea was to make use of the characteristics of rule databases they discovered in core
routers to reduce the complexity of multi-dimensional search to that of a 2D search. By
observing statistics from classifiers in Tier 1 ISP’s core routers, they found that every packet
matches at most a few distinct source–destination prefix pairs (SIP, DIP) presented in the
rule set. In other words, if we project the rule set to just the source and destination fields, no
packet matches more than a small number of rules in the new set of projected rules. Note
that this is emphatically not true for single fields because of wildcards: a single packet can
match hundreds of rules when considering any one field in isolation. Based on this character,
they present the idea of a simple 2D classification method, as shown in Figure 3.6.

The idea is first to use any efficient 2D matching scheme to find all the distinct source–
destination prefix pairs (S1, D1), . . . , (St , Dt) that match a header. For each distinct pair
(Si, Di) there is a linear array or list with all rules that contain (Si, Di) in the source and

Figure 3.6 Extended 2D search policy [5].

Book1099 — “c03” — 2007/2/15 — 18:47 — page 85 — #9

3.2 TRIE-BASED CLASSIFICATIONS 85

destination fields. As shown in Figure 3.6 (S1, D1) contain rules, R5, R6, R2, and R4. Note
that a rule can only be associated with a source–destination prefix pair. On the other hand,
one may wish to replicate rules to reduce the number of source–destination prefix pairs
considered during the search to reduce the searching time. When searching for a rule for
a given key, multiple source–destination prefix pairs can match with the key. For instance
(*, 000) and (1*, 0*) match with a prefix key (111, 000). As a result, the rules in each
matched (S, D) pair will be further searched against with the rest part of the key. For
example, if (S1, D1) is matched, all its rules, R5, R6, R2, and R4, are searched against with,
for instance, the port numbers of the key.

3.2.5 Field-Level Trie Classification (FLTC)

A field-level trie classification (FLTC) uses a field-level trie (FLT) structure that is orga-
nized in a hierarchical structure field by field [6]. The classification data structure has
been optimized so that TCAM and multiway search are deployed for prefix and range
fields, respectively. The query (search) process is also carried out field by field. With proper
implementation, each query only requires a few memory accesses on average, and thus very
high-speed classification can be achieved. The storage requirement of the FLTC is reason-
able due to the node-sharing property of the FLT.Although node sharing makes the updating
processes (insertion and deletion) less straightforward, the complexity of the update oper-
ation remains low because each operation only affects a small part of the data structure.
The FLTC can easily support large classifiers, for example, with 100,000 to 1 million rules,
without compromising query performance.

The FLT structure targets classifiers with multiple fields, each one of which is specified
in either prefix format or range format. Figure 3.7 shows the FLT constructed from the
classifier in Table 3.2. The FLT is defined to have the following properties:

1. It is organized in a hierarchical structure field by field. The depth of an FLT equals
the number of fields, d. In Figure 3.7, there are four levels of nodes, organized from
F1 to F4.2

2. Each node in the FLT contains a rule set, which is also a subset of its parent node’s
rule set. The root node of the FLT is defined to contain all the rules in the classifier.

3. Node a in the ith level3 generates its child nodes in the (i + 1)th level based on the
Fi values of all the rules contained in node a. Depending on Fi’s specification, there
are two different procedures for child-node generation:
• If Fi is specified in prefix format, the number of child nodes of a equals the number

of different prefixes contained in the Fi field of a’s rule set. Each child node is
associated with a different prefix. Assuming that child node b is associated with
prefix p, the Fi value of rule r contained in b’s rule set is either the same as or a
prefix of p. For instance, the root node in Figure 3.7 contains all seven rules and
there are four different prefixes, *, 0*, 00*, and 10*, in field F1, so four child nodes
are generated. Node x associated with prefix 0* contains four rules, R4–R7. The F1
value of R4–R6 is 0*, which is the associated prefix; the F1 value of R7 is *, which
is a prefix of 0*.

2Note that the gray nodes in the bottom do not form a separate level. They are shown only to indicate which rule
is matched when the query (classification) process terminates at the fourth level.
3The root node is defined to be in the first level.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 86 — #10

86 PACKET CLASSIFICATION

Figure 3.7 Example of the four-dimensional FLT. (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 87 — #11

3.2 TRIE-BASED CLASSIFICATIONS 87

• If Fi is specified in range format, we first project all the ranges (taken from
the Fi fields of a’s rule set) onto a number line and obtain a set of intervals. For
each interval I , a child node b is generated. A rule r is contained in b’s rule set
if, and only if, the range specified by the Fi field of r covers I . For instance, node y
generates three child nodes, node y′ with interval [10, 10], which is a single point,
node y′′′ with interval [6, 6], and node y′′ with intervals [4, 5] and [7, 8] (in fact,
there are two pointers both pointing to y′′), as indicated in Figure 3.7.

4. The rule set of a node a in the ith level is unique among the rule sets of all the
nodes in the ith level. If two nodes in the (i − 1)th level, b and c, have a child
node a in common, then only one node, which is a, is generated and they share it.
Figure 3.7 shows that node sharing happens when a node is pointed to by multiple
pointers.

Fields in Prefix Form. Since each field is normally specified in either the prefix or range
forms and each specification has its own favored data structure and searching algorithms,
we group the fields with the same specifications together. In most cases, a classifier has
two groups of fields; the first group in prefix form and the second group in range form. In
Table 3.2, F1 and F2 are in the first group and F3 and F4 are in the second. The FLT is
organized so that fields of the first group appear in the upper levels and fields of the second
one appear in the lower levels.

For the first group where only prefix fields exist, TCAM can be used for storing the
prefixes and searching among them. Since TCAM can accommodate multiple fields simul-
taneously, the query of the first group of fields can be accomplished in a single TCAM
access. Figure 3.8 shows the compressed FLT derived from the classifier in Table 3.2 and
the trie structure in Figure 3.7. Now there is only one level existing for fields F1 and F2. The
root node has seven child nodes initially lying in the third level in Figure 3.7. Each second-
level node has an F1/F2 prefix pair associated with it. Each such prefix pair is the contents

Figure 3.8 Example of the compressed four-dimensional FLT.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 88 — #12

88 PACKET CLASSIFICATION

TABLE 3.3 TCAM Contents for the Compressed FLT

Entry Prefix Node Sum of Lengths
Pair Name from Prefix Pair

1 */00* a 2
2 0*/1* b 2
3 0*/10* c 3
4 0*/01* d 3
5 10*/1* g 3
6 00*/11* e 4
7 00*/110** f 5

of an entry in the TCAM. The prefix pair is derived from the trie structure in Figure 3.7.
For each node a in the third level in Figure 3.7, corresponding to the node in the second
level in Figure 3.8, we find a path from the root node to a with the smallest sum of the prefix
lengths. The prefixes along this path form the prefix pair associated with a in Figure 3.8.
All prefix pairs are arranged in decreasing order of prefix length (the sum of the lengths of
the two prefixes) in the TCAM. For prefix pairs with the same length, their relative order
can be arbitrary. The contents of the TCAM for the compressed FLT in Figure 3.8 is shown
in Table 3.3.

By arranging the prefix pairs in ascending order in the TCAM (meaning that the longest
matching prefix pair will be found), we can guarantee the search result from the TCAM to
be correct, for example, the appropriate node in the second level is determined to continue
the entire query process. A brief proof follows.

When searching the TCAM with a key A/B, if two entries with prefix pairs A1/B1 and
A2/B2 are matched, there will be two scenarios. Without loss of generality, we assume
A1 ≺ A2, meaning that A1 is a prefix of A2.

• In the first scenario, where B1 ≺ B2, the length of A2/B2 is larger than that of A1/B1.
Therefore, the entry with A2/B2 is output as the result. It is a correct result since all the
rules in node a (corresponding to A1/B1) are also contained in node b (corresponding to
A2/B2), which is guaranteed by the property of the FLT, and node b is selected.

• In the second scenario, where B2 ≺ B1, another entry with prefix pair A2/B1 must exist,
which is guaranteed by the generation process of the FLT. Since the length of A2/B1 is
larger than that of both A1/B1 and A2/B2, the entry with A2/B1 is output as the result.
It is a correct result because all rules in both node a and node b are contained in node c
(corresponding to A2/B1).

The above conclusion can be easily extended to multiple prefix fields more than two.
Given a packet header to be classified, the fields belonging to the first group are extracted
and presented to the TCAM for searching. The output from the TCAM indicates a node
in the second level to be accessed next. Since the TCAM has accommodated all the prefix
fields, the rest of the query process relies on the range fields.

Fields in Range Specification. For the nodes existing in the second or lower levels,
we propose using a multiway search tree (k-way search tree) to organize the data structure

Book1099 — “c03” — 2007/2/15 — 18:47 — page 89 — #13

3.2 TRIE-BASED CLASSIFICATIONS 89

Figure 3.9 Example of the node structure organized in three-way search tree. (a) Derived intervals
by range protection; (b) Node structure for a three-way search tree.

at each node. For example, there is a node a in the ith level (i > 1) of the compressed FLT.
After projecting the Fi fields of the rules in a’s rule set onto a number line, seven intervals,
I1 to I7, are obtained with eight end points, E1 to E8, as shown in Figure 3.9a. If we use a
three-way search tree to organize these intervals, the result is shown in Figure 3.9b. It is a
two-layer tree with four blocks (to avoid confusion with the terms ‘level’ and ‘node’ in the
FLT, we use the terms ‘layer’ and ‘block’ in the k-way search tree). Each block contains up
to k pointers and k − 1 end points. The pointer in an internal block points to another block
in the k-way search tree, while the pointer in a leaf block points to a (i + 1)th level node
in the compressed FLT. We use an example to illustrate the searching process in the k-way
search tree. Assuming point P exists in the interval I3, the searching process starts from the
root block x. By comparing P with the two end points, E3 and E6, stored in x, we know
the order among them is E3 < P < E6. So the second pointer is followed to block y in the
second layer. Similarly, by comparing P with the two end points, E4 and E5, we know that
the first pointer associated with interval I3 should be followed to a node in the next level of
the compressed FLT.

The multiway search is an efficient algorithm for range lookup problems. The number of
layers of a k-way search tree can be determined by logk M where M is the number of intervals.
From the implementation point of view, each block in the k-way search tree is a basic unit
stored in memory, which requires one memory access for one read/write operation. Thus,
during a search process, the number of memory accesses equals the number of layers of the
k-way search tree, which is logk M. The number k here is limited by the block size, which
is determined by the memory bandwidth.

The query process of an FLT starts from the TCAM for all the prefix fields. After reaching
the range field, the query process proceeds one level (or one field) at a time and at each level
a k-way search is performed to find the next-level node to be accessed. The query process
terminates when a leaf node is reached and a matched rule (if it exists) is returned as the
result.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 90 — #14

90 PACKET CLASSIFICATION

3.3 GEOMETRIC ALGORITHMS

3.3.1 Background

As mentioned before, each field of a classifier can be specified in either a prefix/length pair
or an operator/number form. From a geometric point of view, both specifications could be
interpreted by a range (or interval) on a number line. Thus, a rule with two fields represents
a rectangle in the 2D Euclidean space and a rule with d fields represents a d-dimensional
hyper-rectangle. The classifier is a set of such hyper-rectangles with priorities associated.
Given a packet header (d-tuple), it represents a point P in the d-dimensional space. The
packet classification problem is equivalent to finding the highest priority hyper-rectangle
that encloses P. Figure 3.10 gives the geometric representation of F1 and F2 of the classifier
in Table 3.2 with rectangles overlapped according to their priorities. Given the point P(0010,
1100), it is straightforward to figure out the highest priority matching rule R1.

There are several standard problems in the field of computational geometry that resemble
packet classification [7]. One is the point location problem that is defined as finding the
enclosing region of a point, given a set of non-overlapping regions. Theoretical bounds for
point location in N (hyper-)rectangular regions and d > 3 dimensions are O(log N) time
with O(Nd) space, or O((log N)d−1) time with O(N) space. Packet classification is at least
as hard as point location since (hyper-)rectangles are allowed to overlap. This conclusion
implies that the packet classification is extremely complex in the worst case.

Packet classification algorithms of this category always involve the range interpretation
on certain fields of the classifier. If the prefixes or ranges in one field of a classifier are
projected on the number line [0, 2W − 1], a set of disjoint elementary ranges (or intervals)
is obtained and the concatenation of these elementary ranges forms the whole number line.
For instance, there are four ranges on F1 dimension and five ranges on F2 dimension, as
shown in Figure 3.10. Given a number Z on the number line, the range lookup problem is
defined as locating the elementary range (or interval) containing Z . One way to locate the
number on a range is to use the k-way search described in previous section. For simplicity, we
use range (or interval) instead of elementary range (or interval) unless explicitly specified.
It is clear that a prefix represents a range on the number line. On the other hand, an arbitrary

Figure 3.10 Geometric representation of the classifier in Table 3.2.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 91 — #15

3.3 GEOMETRIC ALGORITHMS 91

range may need up to 2W − 2 prefixes for representation [3]. This is a useful conclusion
for analyzing the increased storage complexity of some classification algorithms that only
support prefix specification well. The process of transforming an arbitrary range into one
or several prefixes is called range splitting.

3.3.2 Cross-Producting Scheme

Srinivansan et al. [4] proposed a cross-producting scheme that is suitable for an arbitrary
number of fields and either type of field specification. The cross-producting scheme works
by performing d range lookup operations, one on each field, and composing these results
to index a pre-computed table that returns the highest priority rule matched.

Refer to F1 and F2 of classifier C of Table 3.2. For the first step, the rule specifications
in the F1 and F2 fields are projected on two number lines vertical to each other and two sets
of ranges {r1[0], . . . , r1[3]} and {r2[0], . . . , r2[4]}, are obtained as shown in Figure 3.11.
Each pair of ranges (r1[i], r2[j]), corresponds to a small rectangle with a pre-computed
best matching rule written inside (‘—’ means no matching rule exists). The entire pre-
computed table is shown in Figure 3.11 if we organize the table in a 2D matrix format.
Thus, given a 2-tuple (p1, p2), two range lookups are performed on each range set and the
two matching ranges returned are composed to index the pre-computed table. For instance,
if p1 = 0010 and p2 = 1100, the two returned ranges (r1[0], r2[3]), tell us that R1 is the best
matching rule. Regarding the generic d-dimensional classifier, d sets of ranges are obtained
by projecting the rule specification on each dimension and each item in the d-dimensional
cross-product table could be pre-computed in the same way as the above example.

The cross-producting scheme has a good query time complexity of O(d · tRL), where
tRL is the time complexity of finding a range in one dimension. However, it suffers from
a memory explosion problem; in the worst case, the cross-product table can have O(Nd)

entries. Thus, an on-demand cross-producting scheme together with rule caching are pro-
posed [4] for classifiers bigger than 50 rules in five dimensions. Incremental updates require
reconstruction of the cross-product table, so it cannot support dynamic classifiers well.

Figure 3.11 Geometric representation of the cross-producting algorithm.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 92 — #16

92 PACKET CLASSIFICATION

3.3.3 Bitmap-Intersection

The bitmap-intersection scheme proposed by Lakshman et al. [8] applies to multi-
dimensional packet classification with either type of specification in each field. This scheme
is based on the observation that the set of rules, S, that matches a packet is the intersection
of d sets, Si, where Si is the set of rules that matches the packet in the ith dimension alone.

Figure 3.12 contains an example to illustrate how the bitmap-intersection scheme works.
Four rules of a 2D classifier are depicted as four rectangles in Figure 3.12 and projected
on the two number lines. Two sets of intervals {X1, . . . , X6} and {Y1, . . . , Y6} are derived
in each dimension by the rule projections. Each interval is associated with a precomputed
4-bit bitmap with each bit representing a rule. A ‘1’ in the bitmap of Xk/Yk denotes that the
rule contains (matches) Xk/Yk in the X/Y dimension. Given a packet P(p1, p2), two range
lookups (e.g., using a multiway search tree in Fig. 3.9) are performed in each interval set
and two intervals, Xi and Yj, which contain p1 and p2, are determined. Then the resulting
bitmap, obtained by the intersection (a simple bitwise AND operation) of the bitmaps of
Xi and Yj, shows all matching rules for P. If the rules are ordered in decreasing order of
priority, the first ‘1’ in the bitmap denotes the highest priority rule. It is straightforward to
expand the scheme to apply to a multi-dimensional classification.

Since each bitmap is N bits wide, and there are O(N) ranges in each of the d dimensions,
the storage space consumed is O(dN2). Query time is O(d · tRL + dN/w), where tRL is
the time to perform one range lookup and w is the memory width. Time complexity can be
reduced by a factor of d by looking up each dimension independently in parallel. Incremental
updates are not well-supported.

It is reported that the scheme can support up to 512 rules with a 33-MHz FPGA and
five 1-Mbyte SRAMs, classifying 1 mpps [8]. The scheme works well for a small number
of rules in multiple dimensions, but suffers from a quadratic increase in storage and linear
increase in classification time with the size of the classifier.

Figure 3.12 Geometric interpretation of the bitmap-insertion scheme for a 2D classifier.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 93 — #17

3.3 GEOMETRIC ALGORITHMS 93

3.3.4 Parallel Packet Classification (P2C)

Lunteren et al. [9] proposed a fast multi-field classification scheme based on the independent
searching and primitive range encoding. The idea is that the ranges in each dimension are first
encoded into some code vectors. Then for a specific classification operation, P2C performs
irrespective parallel searching in each dimension (sub-range) to get the corresponding code
vectors. And then the vectors found in all dimensions are combined together to carry out a
ternary match in TCAM to finally gain the multi-field classification outcome. Ranges are
defined as the intervals divided by the boundaries of all rules; as shown in Figure 3.13, for
example, X0–X8 on axis X and Y0–Y6 on axis Y are all ranges. And it is straightforward that
each range has a unique matching condition.

The ranges on each dimension divide the hyper-plane into several ‘grids’ (as depicted in
Fig. 3.13); each of the grids can be represented by a d-tuple of the ranges; and the rule with
the highest priority that covers one of the grids is defined as ‘the rule corresponding to this
grid’. For example, as the case shown in Figure 3.13, the grid determined by the 2-tuple
(X2, Y2) corresponds to R4, and the grid determined by (X5, Y4) corresponds to R1, with
assumption that R1 is of higher priority.

According to this principle, if the correspondent relationships of the tuple of the ranges
and the rules are pre-computed, the classification operation is then carried out to be: (1) to
find the corresponding ranges of the given key on each dimension in parallel; (2) to combine
the ranges into a key to find the corresponding rule.

In P2C, the ranges are all encoded into code vectors; in the first step, the ranges are found
in the form of code vectors and then the code vectors are combined together and put in a
TCAM to gain the final multi-dimension classification outcome.

Encoding the Ranges. As shown in Figure 3.14, the layers (dashed lines) are defined
according to the priority of the rules and the relation of overlap between them. The higher
the priority of a rule is, the higher the layer its corresponding range belongs to, on their
dimension; non-overlapping rules can be within the same layer.

‘Layer’ is the minimum unit in the assignment of bits of code. Binary digits above
the lines are code vectors assigned to the range on this layer, representing the matching

Figure 3.13 Rules and primitive ranges in both X and Y dimensions.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 94 — #18

94 PACKET CLASSIFICATION

Figure 3.14 Three encoding styles.

conditions of the corresponding ranges, such as ‘01’ and ‘10’ in Figure 3.14a. Three range
coding styles, as shown in Figure 3.14, have been proposed to fit for different environments,
in order to get the optimal encoding result (with the fewest bits assigned).

The corresponding results produced by the three encoding styles are given by Table 3.4,
according to the encoding styles in Figure 3.14. Then, according to the relationship of
the rules and the range (as shown in Fig. 3.13), the matching conditions of the rule in
dimension X is given by Table 3.5. The ternary form matching conditions for dimension Y
can be obtained similarly.

When a packet arrives, it is mapped to a range independently. The range corresponds to
a code, which is then combined with the codes of other dimensions’ ranges. The combined
range code is then used to lookup the TCAM to find the highest priority rule.

TABLE 3.4 Intermediate Result Vectors for the Range
Hierarchies

Ranges

X1 X2 X3 X4 X5 X6 X7

Style I 0100 0101 0001 0011 1011 1010 0010
Style II 100 101 001 011 111 110 010
Style III 0100 0101 0001 0010 1010 1011 0011

Book1099 — “c03” — 2007/2/15 — 18:47 — page 95 — #19

3.3 GEOMETRIC ALGORITHMS 95

TABLE 3.5 Ternary-Match Conditions for the Range
Hierarchies

R4 R3 R2 R1

Style I xxx1 xx1x 01xx 10xx
Style II xx1 x1x 10x 11x
Style III xx01,xx10 xx10,xx11 01xx 10xx

Performance Comments. Adopting independent field search makes parallel search
in each dimension viable. The time complexity of this algorithm lies on the most time-
consuming one of those independent field searches. Every packet classification needs about
five memory accesses (four for the longest field search, and one for TCAM access) [9]. The
reported memory requirement is relatively good because the coding method is used. The
algorithm has been designed such that any rule insertion or removal will not impact the codes
for existing rules. Furthermore, compared to most other packet classification schemes, P2C
stores the data related to a single rule at very few locations, typically one location in each
field search structure and at one location in the TCAM (e.g., a total of 6 locations for 5-tuple
classification). As a result, updates require only incremental modification of very few loca-
tions in the data structure, enabling fast efficient updates with a rate >10,000 rules/second.
Those updates can be performed without interrupting the classification operation.

3.3.5 Area-Based Quadtree

Buddhikot et al. [10] proposed the area-based quadtree (AQT) structure for 2D classification
with prefix specification in both fields as shown in Figure 3.15a. Compared with a binary
tree, the node of quadtree may have up to four children and four pointers labeled with 00,
01, 10, and 11 as shown in Figure 3.15b. Each node in the AQT represents a 2D space that
is evenly decomposed into four quadrants corresponding to its four children. For example,
the root node of Figure 3.15b denotes the entire square in Figure 3.15a and thus the four
children represent the four quadrants, SW (southwest), NW (northwest), SE (southeast),
and NE (northeast), respectively. If the 2D space represented by the root node is expressed
as a prefix pair (*, *), the four quadrants are therefore (0*, 0*), (0*, 1*), (1*, 0*), and
(1*, 1*) with each prefix denoting a range in one dimension.

For a certain classifier C, theAQT is constructed as follows. A rule set S(u) containing all
rules of C is associated with the root node u. u is expanded with four children (decomposing
space (*, *)) each associated with a rule set S(vm), where 1 ≤ m ≤ 4. S(vm) contains the
rules that are fully contained in the quadrant represented by vm. However, there are some
rules in S(u) that are not fully contained in any of the four quadrants. Such rules are stored
in another so-called crossing filter set (CFS) associated with node u. Each rule in the CFS
is said to be a crossing node u because it completely spans at least one dimension of the 2D
space represented by u. For instance, rule R7 denoted by a bold rectangle in Figure 3.15a is
said to cross space (*, *) since the rectangle completely spans x-dimension of space (*, *).
Thus, R7 is stored in the CFS of the root node in Figure 3.15c. Each child node vm of u is
expanded in the same way until S(vm) is empty. This procedure is carried out recursively
and the construction terminates until the rule set S of each leaf node is empty. Note that
only the CFS is indeed stored at each node after the construction. Therefore, the storage

Book1099 — “c03” — 2007/2/15 — 18:47 — page 96 — #20

96 PACKET CLASSIFICATION

Figure 3.15 Example of the area-based quadtree structure. (a) Cross-producting scheme;
(b) Area-based quadtree with the four quadrants; and (c) Expressed as (F1, F2) pairs from each
rule in Table 3.2.

complexity of AQT tree is O(NW) since each rule is only stored once at a certain node v,
where the rule crosses the 2D space of v.

Given the 2-tuple, P(p1, p2), query of the AQT involves traversing the quadtree from
root node to a leaf node. The branching decision at each node is made by two bits, each taken

Book1099 — “c03” — 2007/2/15 — 18:47 — page 97 — #21

3.3 GEOMETRIC ALGORITHMS 97

from p1 and p2. P is compared with the rules in the CFS of each node encountered along
the traversing path to find matches. The best matching rule is returned after traversing to the
leaf node. The CFS at each node could be split into two sets, x-CFS and y-CFS. The former
contains rules completely spanning in x dimension, while the latter spans in y dimension.
Because of this spanning, only the y(x) dimension (field) of each rule in x(y)-CFS needs to
be stored. For instance, R7 completely spans the space (*, *) in x dimension so it belongs
to the x-CFS of the root node. In fact, only ‘00*’, which is the y field of R7 is kept and
used for the range lookup at the root node. Now finding matches of P in the CFS of a node
is transformed into two range lookups in x-CFS and y-CFS. Figure 3.15c shows the AQT
for the classifier in Table 3.2 with the geometric interpretation shown in Figure 3.15a. The
dashed line in Figure 3.15c indicates the traversing path when a 2-tuple (001, 110) (point
P in Fig. 3.15a) is searched in the AQT.

An efficient update algorithm for the AQT is proposed in [10]. It has O(NW) space
complexity, O(αW) search time, and O(αα · √

N) update time, where α is a tunable integer
parameter.

3.3.6 Hierarchical Intelligent Cuttings

Hierarchical intelligent cuttings (HiCuts), proposed by Gupta and McKeown [11], partitions
the multidimensional search space guided by heuristics that exploit the structure of the
classifier.

Rule Storing Organization. The HiCuts algorithm builds a decision tree data structure
by carefully preprocessing the classifier. Each internal node v of the decision tree built on
a d-dimensional classifier is associated with:

1. A box B(v), which is a d-tuple of intervals or ranges: ([l1 : r1], [l2 : r2], . . . , [ld : rd]).
2. A cut C(v), defined by a dimension i, and np(C), the number of times B(v) is cut

(partitioned) in dimension i (i.e., the number of cuts in the interval [li : ri]). The cut
thus evenly divides B(v) into smaller boxes, which is associated with the children
of v.

3. A set of rules S(v). The tree’s root has all the rules associated with it. If u is a child
of v, then S(u) is defined as the subset of S(v) that collides with B(u). That is, every
rule in S(v) that spans, cuts, or is contained in B(u) is also a member of S(u). S(u) is
called the colliding rule set of u.

As an example, consider the case of two W -bit-wide dimensions. The root node, v,
represents a box of size 2W × 2W . We make the cuttings using axis-parallel hyperplanes,
which are just lines in two dimensions. Cut C(v) is described by the number of equal
intervals we cut in a particular dimension of box B(v). If we decide to cut the root node
along the first dimension into D intervals, the root node will have D children, each with an
associated box of size (2W/D) × 2W .

We perform cutting on each level and recursively on the children of the nodes at that
level until the number of rules in the box associated with each node falls below a threshold
called binth. In other words, the number of rules in each leaf node is limited to at most
binth to speed up the linear search in the node. A node with fewer than binth rules is not
partitioned further and becomes a leaf of the tree.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 98 — #22

98 PACKET CLASSIFICATION

TABLE 3.6 Rule Set Example with Two
Dimensions in Ranges

Rule X Range Y Range

R1 0–31 0–255
R2 0–255 128–131
R3 64–71 128–255
R4 67–67 0–127
R5 64–71 0–15
R6 128–191 4–131
R7 192–192 0–255

To illustrate this process, Table 3.6 shows an example classifier. Figure 3.16 illustrates
this classifier geometrically and Figure 3.17 shows a possible decision tree. Each ellipse
denotes an internal node v with a triplet (B(v), dim(C(v)), np(C(v))) and each square
is a leaf node containing rules. The root node u denotes the entire space with the box
B(u) = 256 × 256. B(u) is evenly cut into four small boxes in dimension X shown in
Figure 3.17. In this example, binth = 2. Therefore, the set with R2, R3, R4, and R5 is further
cut in Y dimension.

Classification Scheme. Each time a packet arrives, the classification algorithm tra-
verses the decision tree to find a leaf node, which stores a small number of rules. A linear
search of these rules yields the desired matching.

Performance Comments. The characteristics of the decision tree (its depth, degree of
each node, and the local branching decision to be made at each node) can be tuned to
trade off query time against storage requirements. They are chosen while preprocessing the
classifier based on its characteristics. Four heuristics have been proposed when performing
the cuts on node v [11].

For 40 real-life 4D classifiers and some of them with up to 1700 rules, HiCuts requires
less than 1 Mbyte of storage, has a worst-case query time of 20 memory accesses, and
supports fast updates.

3.3.7 HyperCuts

Singh et al. [12] have proposed a classification algorithm based on a decision tree, called
HyperCuts, the idea of which is somewhat similar with that of the HiCuts algorithm
(Section 3.3.6) in that they both allow the leaf nodes to store more than one rule and
that linear search is performed at the leaf nodes. HyperCuts makes two improvements over
HiCuts:

1. At each node of the decision tree, the rule is cut in multi-dimension at one time and
stored in a multi-dimensional array. In other words, it uses HyperCut to cut rules,
while HiCuts only considers one-dimensional cutting.

2. If all the children of a node in the tree contain the same subset of rules, the subset
is lifted up to be stored in the node to reduce storage space. For instance, R2 in
Figure 3.17 can be moved up to the root node and eliminated from the four children
nodes.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 99 — #23

3.3 GEOMETRIC ALGORITHMS 99

Figure 3.16 Geometrical representation of the seven rules in Table 3.6. (a) R1; (b) R2; (c) R3;
(d) R4; (e) R5; (f) R6; (g) R7; (h) All seven rules.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 100 — #24

100 PACKET CLASSIFICATION

Figure 3.16 Continued.

Figure 3.17 Possible decision tree for classifier in Table 3.6 (binth = 2).

Each node in the decision tree has associated with:

• A region R(v) that is covered.
• A number of cuts (NC) and a corresponding array of NC pointers.
• A list of rules that may match.

Figure 3.18 shows HyperCuts in action for classifier in Table 3.7. The tree consists of a
single root node that covers the region [0–15, 0–15, 0–3, 0–3, 0–1], which is split into
sub-regions with 16 cuts. Note that each dimension is evenly cut into multiple regions.

Rule Storing Organization. The decision-tree-building algorithm starts with a set of
N rules, each of the rules containing d dimensions. Each node identifies a region and has
associated with it a set of rules S that match the region. If the size of the set of rules at the
current node is larger than the acceptable bucket size (i.e., binth in HiCuts), the node is
split in a number (NC) of child nodes, where each child node identifies a sub-region of the
region associated with the current node. Identifying the number of child nodes as well as
the sub-region associated with each of the child nodes is a two-step process, which tries to

Book1099 — “c03” — 2007/2/15 — 18:47 — page 101 — #25

3.3 GEOMETRIC ALGORITHMS 101

Figure 3.18 HyperCuts decision tree based on the classifier in Table 3.7. (a) Rules corresponding
to fixed values in F2; (b) Rules corresponding to fixed values in F4; (c) Rules corresponding to fixed
values in F5; (d) A search through the HyperCuts decision tree (evenly cut in each dimension).

locally optimize the split(s) such that the distribution of the rules among the child nodes is
optimal. The detailed cutting process can be found in the work of Singh et al. [12].

Classification Scheme. The search algorithm for a packet with an i-dimensional header
starts with an initialization phase of setting the current node for searching as the root node

TABLE 3.7 Range-based Representation of a
Classifier with 12 Rules on Five Fields (F1–F5)

Rule F1 F2 F3 F4 F5 Action

R0 0–1 14–15 2 0–3 0 act0
R1 0–1 14–15 1 2 0 act0
R2 0–1 8–11 0–3 2 1 act1
R3 0–1 8–11 0–3 1 1 act2
R4 0–1 8–11 2 3 1 act1
R5 0–7 14–15 2 1 0 act0
R6 0–7 14–15 2 2 0 act0
R7 0–7 8–15 0–3 0–3 1 act2
R8 0–15 4–7 0–3 0–3 1 act2
R9 0–15 0–7 0–3 1 0 act0
R10 0–15 0–15 0–3 0–3 0 act3
R11 0–15 0–15 0–3 0–3 1 act4

Book1099 — “c03” — 2007/2/15 — 18:47 — page 102 — #26

102 PACKET CLASSIFICATION

of the decision tree structure and setting the regions that cover the packet header to the
maximum value of the regions for each of the dimensions. Then the decision tree is traversed
until either a leaf node or a NULL node is found, with the hyper-regions that cover the values
in the packet header being updated at each node traversed. Once a leaf node is found, the list
of rules associated with this node is fully searched and the first matching rule is returned.
If there is no match, a NULL is returned.

This is further explained by going through an example. Figure 3.19 shows that a packet
arrives at a node A that covers the regions 200–239 in the X dimension and 80–159 in the
Y dimension. The packet header has the value 215 in the X dimension and 111 in the Y
dimension. During the search, the packet header is escorted by a set of registers carrying
information regarding the hyper-region to which the packet header belongs at the current
stage. In this example, the current hyper-region is {[200–239], [80–159], …}.

Node A has 16 cuts, with four cuts for each of the dimensions X and Y . To identify the
child node, which must be followed for this packet header, the index in each dimension is
determined as follow: first, Xindex = �215 − 200/10 = 1. This is because each cut in the
X dimension is of size (239 − 200 + 1)/4 = 10. Similarly, Yindex = �111 − 80/20 = 1.
This is because each cut in the Y dimension is of size (159 − 80 + 1)/4 = 20. As a result
the child node B is picked and the set of registers is updated with the new values describ-
ing the hyper-region covering the packet header at this stage. This hyper-region is now:
{[210–219], [100–119], …}. The search ends when a leaf node is reached in which
case the packet header is checked against the fields in the list of rules associated with
the node.

Performance Comments. By contrast, HyperCuts allows the cutting of both source
and destination IP fields in a single node, which not only disperses the rules among the
child nodes in a single step but also reduces the effect of rule replication. Furthermore,
HyperCuts pushing up common sets of rules reduces the damage due to replication. It is
reported in [12] that for real-life firewall databases, this optimization resulted in a memory

Figure 3.19 Search through the HyperCuts decision tree.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 103 — #27

3.4 HEURISTIC ALGORITHMS 103

reduction of 10 percent. Overall, for firewall databases, HyperCuts uses an amount of
memory similar to EGT-PC (Section 3.2.4) while its search time is up to five times better
than HiCuts optimized for speed. For synthetic core-router style databases of 20,000 rules
size, HyperCuts requires only 11 memory accesses for search in the worst case; for edge-
router style databases, HyperCuts requires 35 memory accesses for a database of 25,000
rules. In the case of firewall-like databases, the presence of ∼10 percent wildcards in either
of the source and destination IP field contributes to a steep memory increase. This is possibly
because of a large number of rules replicated in leaf nodes.

3.4 HEURISTIC ALGORITHMS

3.4.1 Recursive Flow Classification

Gupta and McKeown [3, 7] have proposed a heuristic scheme called Recursive Flow
Classification (RFC) and have applied it to packet classification on multiple fields.
Classifying a packet involves mapping the H-bit packet header to a T -bit action identi-
fier (where T = log N , T � H) for a N-rule classifier. A simple, but impractical, method is
to precompute the action for each of the 2H different packet headers and store the results in
a 2H × 2T array. Therefore, only one memory access is needed to yield the corresponding
action. But this would require too much memory. The main aim of RFC is to perform the
same mapping, but over several stages (phases), as shown in Figure 3.20. The mapping is
performed recursively; at each stage, the algorithm performs a reduction, mapping one set
of values to a smaller set. In each phase, a set of memories returns a value shorter, that is,
expressed in fewer bits, than the index of the memory access. Figure 3.21 illustrates the
structure and packet flow of the RFC scheme.

Rule Storing Organization. The construction of the preprocessed tables is explained
with a sample rule set C [7] shown in Table 3.8. Note that the address information has been
sanitized, which makes it different from what we used in reality.

Figure 3.20 Basic idea of the recursive flow classification (RFC).

Book1099 — “c03” — 2007/2/15 — 18:47 — page 104 — #28

104 PACKET CLASSIFICATION

Figure 3.21 Packet flow in the recursive flow classification.

TABLE 3.8 Rule Set Example

Destination IP (addr/mask) Source IP (addr/mask) Port Number Protocol

152.163.190.69/255.255.255.255 152.163.80.11/0.0.0.0 * *
152.168.3.0/255.255.255.0 152.163.200.157/0.0.0.0 eq www UDP
152.168.3.0/255.255.255.0 152.163.200.157/0.0.0.0 range 20–21 UDP
152.168.3.0/255.255.255.0 152.163.200.157/0.0.0.0 eq www TCP
152.163.198.4/255.255.255.255 152.163.160.0/255.255.252.0 gt 1023 TCP
152.163.198.4/255.255.255.255 152.163.36.0/0.0.0.255 gt 1023 TCP

1. The first step of constructing the preprocessed table is to split the d fields of the packet
header into multiple chunks that are used to index multiple memories in parallel. For
example, the number of chunks equals eight in Figure 3.21. One possible way of
chopping the packet header for rule set C is shown in Figure 3.22.

2. Each of the parallel lookups will map the chunk to an eqID according to the rules.
Consider a chunk of size b bits. Its mapping table is of 2b entries and each entry
contains an eqID for that chunk value. The eqID is determined by those component(s)
of the rules in the classifier corresponding to this chunk. The term ‘Chunk Equivalence
Set’ (CES) is used to denote a set of chunk values that have the same eqID. To further
understand the meaning of ‘CES’, consider chunk 3 for the classifier in Table 3.8. If
there are two packets with protocol values lying in the same set and have otherwise

Figure 3.22 Chopping of packet header into chunks for rule set C in the first phase of RFC.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 105 — #29

3.4 HEURISTIC ALGORITHMS 105

identical headers, the rules of the classifier do not distinguish between them. Then
the ‘CES’ for chunk 3 will be:

(a) {TCP}
(b) {UDP}
(c) {all remaining numbers in the range 0–255}
Each CES can be constructed in the following manner. For a b-bit chunk, project the
rules in the classifier on to the number line [0, 2b − 1]. Each component projects to a
set of (not necessarily contiguous) intervals on the number line. The end points of all
the intervals projected by these components form a set of non-overlapping intervals.
Two points in the same interval always belong to the same equivalence set. Two
intervals are also in the same equivalence set if exactly the same rules project onto
them. An example of chunk 2 of the classifier in Table 3.8 with the end-points of
the intervals (I0 . . . I4) and the constructed equivalence sets (E0 . . . E3) are shown in
Figure 3.23. The four CESs can be decoded using two bits. For example, we can assign
‘00’ to E1, ‘01’ to E0, ‘10’ to E2 and ‘11’ to E3. Then the RFC table for this chunk is
filled with the corresponding eqIDs, such as table(20) =‘01’, table(23) =‘11’, etc.

3. A chunk in the following steps is formed by a combination of two (or more) chunks
obtained from memory lookups in previous steps, with a corresponding CES. If, for
example, the resulting chunk is of width b bits, we again create equivalence sets
such that two b-bit numbers that are not distinguished by the rules of the classifier
belonging to the same CES. Thus, (20, UDP) and (21, UDP) will be in the same CES
in the classifier of Table 3.8 in the second step. To determine the new equivalence
sets for this phase, we compute all possible intersections of the equivalence sets from
the previous steps being combined. Each distinct intersection is an equivalence set
for the newly created chunk. For example, if we combine chunk 2 (port number) and
3 (protocol), then five CESs can be obtained:

(a) {({80}, {UDP})}
(b) {({20 − 21}, {UDP})}
(c) {({80}, {TCP})}
(d) {({gt1023}, {TCP})}
(e) {all the remaining crossproducts}.
These can be expressed in a three-bit eqID, as shown in Figure 3.24e. From this
example, we can see that the number of bits has been reduced from four to three
during step one (two bits for chunk 2 and 3, respectively) and step two. For the
combination of the two steps, this number has dropped from 24 to 3.

Figure 3.23 Example of computing the four equivalence classes E0 . . . E3 for chunk 2 (correspond-
ing to the 16-bit transport-layer destination port number) in the rule set of Table 3.8.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 106 — #30

106 PACKET CLASSIFICATION

Figure 3.24 Rule storing organization for RFC for the rule set in Table 3.8. (a) Destination IP field
made into chunks and epIDs. (b) Source IP field made into chunks and eqIDs. (c) Port number field
made into chunks and eqIDs. (d) Protocol field made into chunks and eqIDs. (e) Port number and
protocol fields combined and made into chunks and eqIDs.

Classification Scheme. The classification of a packet is first split into several chunks
to be used as an index; then the required eqIDs are combined into chunks of the second
phase; this procedure goes on until the final phase is reached when all the remaining eqIDs
have been combined into only one chunk. The corresponding table will hold the actions for
that packet.

Performance Comments. The contents of each memory are chosen so that the result
of the lookup is narrower than the index. Different combinations of the chunks can yield
different storage requirements. It is reported [7] that with real-life 4D classifiers of up to
1700 rules, RFC appears practical for 10 Gbps line rates in hardware and 2.5 Gbps rates in

Book1099 — “c03” — 2007/2/15 — 18:47 — page 107 — #31

3.4 HEURISTIC ALGORITHMS 107

software. However, the storage space and preprocessing time grow rapidly for classifiers
larger than 6000 rules. An optimization described in Ref. [7] reduces the storage requirement
of a 15,000 four-field classifier to below 4 Mbytes.

3.4.2 Tuple Space Search

Srinivansan et al. [13] have proposed a tuple space search scheme for multi-dimensional
packet classification with prefix specification. The basic tuple space search algorithm
decomposes a classification query into several exact match queries in hash tables. This
algorithm is motivated by the observation that while classifiers contain many different pre-
fixes, the number of distinct prefix lengths tends to be small. Thus, the number of distinct
combinations of prefix lengths is also small. Then a tuple for each combination of field
length can be defined and by concatenating the known set of bits for each field in order, a
hash key can be created to map the rules of that tuple into a hash table. Suppose a classifier
C with N rules that results in M distinct tuples. Since M tends to be much smaller than N in
practice, even a linear search through the tuple set is likely to greatly outperform the linear
search through the classifier.

Rule Storing Organization. Each rule R in a classifier can be mapped into a d-tuple
whose ith component specifies the length of the prefix in the ith field of R. A tuple space is
defined as the set of all such tuples of a classifier. For each tuple in the tuple space, a hash
table is created storing all rules mapped in the tuple. As an example, Table 3.9 shows the
tuples and associated hash tables for the classifier in Table 3.2. For instance, (1, 2) means
the length of the first prefix is one and the length of the second prefix is two.

Rules always specify IP addresses using prefixes, so the number of bits specified is clear.
For port numbers that are often specified using ranges, the length of a port range is defined
to be its nesting level. For instance, the full port number range [0, 65,535] has nesting level
and length 0. The ranges [0, 1023] and [1024, 65,535] are considered to be nesting level
1, and so on. If we had additional ranges [30,000, 34,000] and [31,000, 32,000], then the
former will have nesting level 2 and the latter 3 (this algorithm assumes that port number
ranges specified in a database are non-overlapping).

While the nesting level of a range helps define the tuple it will be placed in, a key to
identify the rule within the tuple is also needed. Thus a RangeID is used, which is a unique
ID given to each range in any particular nesting level. So the full range always has the
ID 0. The two ranges at depth 1, namely, ≤1023 and >1024, receive the IDs 0 and 1,
respectively. Suppose we had ranges 200 . . . 333, 32,000 . . . 34,230, and 60,000 . . . 65,500
at level 2, then they would be given IDs 0, 1 and 2, respectively.

TABLE 3.9 Example of the Tuple Space Search
Scheme

Tuple Hash Table Entries

(0, 2) {R7}
(1, 1) {R6}
(1, 2) {R4, R5}
(2, 1) {R2, R3}
(2, 2) {R1}

Book1099 — “c03” — 2007/2/15 — 18:47 — page 108 — #32

108 PACKET CLASSIFICATION

Notice that a given port in a packet header can be mapped to a different ID at each
nesting level. For example, with the above ranges, a port number 33,000 will map on to
three RangeID values, one for each nesting depth: ID 0 for nesting depth 0, ID 1 for nesting
depth 1, and ID 1 for nesting depth 2. Thus, a port number field in the packet header must
be translated to its corresponding RangeID values before the tuple search is performed. In
summary, the nesting level is used to determine the tuple, and the RangeID for each nesting
level is used to form the hash key, the input to the hash function.

Classification Scheme. All rules that map to a particular tuple have the same mask:
some number of bits in the IP source and destination fields, either a wild card in the protocol
field or a specific protocol ID, and port number fields that contain either a wild card or a
RangeID. Thus, we can concatenate the required number of bits from each field to construct
a hash key for that rule. All rules mapped to a tuple U are stored in a hash table Hashtable(U).
For instance, rules R4 and R5 are stored in the same hash table, say Hashtable2. A probe in a
tuple U involves concatenating the required number of bits from the packet as specified by
U (after converting port numbers to RangeID), and then doing a hash in Hashtable(U). The
key will be hashed in each table to find the matched rule. For instance, the key is hashed
and matched with R4 in Hashtable2. Thus, given a packet P, we can linearly probe all the
tuples in the tuple set, and determine the highest priority filter matching P.

Performance Comments. The query time complexity of the basic tuple space search
scheme is O(M), where M is the number of tuples in the tuple space. Perfect hashing is
assumed here, which is chosen to avoid hash collisions.

M is still large for many real cases. Thus, a simple but efficient optimization called tuple
pruning is proposed in [13] to improve the query speed and update performance. When a
packet header presents to be classified, longest prefix matching is first performed in each
dimension. The best matching prefix Pi in each dimension i returns a tuple list tli that is
precomputed and associated with the prefix. Each tuple in the tuple list from Pi contains at
least one rule whose ith field equals Pi or is a prefix of Pi. Another tuple list, the intersection
list, is derived from the intersection of all tli. For a given query, only the tuples contained
in the intersection list need to be searched. It will benefit if the reduction in the tuple space
afforded by pruning offsets the extra individual prefix (or range) matches on each field.
Reference [13] reports that by having the tuple pruning only in two fields, for example, the
source and destination IP address, the number of tuples that needs to be searched is greatly
reduced.

The storage complexity for tuple space search is O(NdW) since each rule is stored in
exactly one hash table. Incremental updates are supported and require just one hash memory
access to the hash table associated with the tuple of the modified rule. However, the use of
hashing may have hash collision and cause the search/update nondeterministic.

3.5 TCAM-BASED ALGORITHMS

3.5.1 Range Matching in TCAM-Based Packet Classification

Ternary content addressable memory (TCAM)-based algorithms are gaining increasing
popularity for fast packet classification. In general, a TCAM coprocessor works as a look-
aside processor for packet classification on behalf of a network processing unit (NPU) or

Book1099 — “c03” — 2007/2/15 — 18:47 — page 109 — #33

3.5 TCAM-BASED ALGORITHMS 109

Figure 3.25 Network processor and its TCAM coprocessor.

network processor. When a packet is to be classified, an NPU generates a search key based
on the information extracted from the packet header and passes it to the TCAM coprocessor
for classification. A TCAM coprocessor finds a matched rule in O(1) clock cycles and,
therefore, offers the highest possible lookup/matching performance. Figure 3.25 is a logic
diagram showing how an NPU works with its TCAM coprocessor. When a packet arrives,
the NPU generates a search key based on the packet header information and passes it to the
TCAM coprocessor to be classified, via a NPU/TCAM coprocessor interface. A local CPU
is in charge of rule table update through a separate CPU-TCAM coprocessor interface.

However, despite its fast lookup performance, one of the most critical resource man-
agement issues in the use of TCAM for packet classification/filtering is how to effectively
support filtering rules with ranges, known as range matching. The difficulty lies in the fact
that multiple TCAM entries have to be allocated to represent a rule with ranges. A range
is said to be exactly implemented in a TCAM if it is expressed in a TCAM without being
encoded. For example, six rule entries are needed to express a range {>1023} in a TCAM,
if the range is exactly implemented, as shown in Figure 3.26.

Today’s real-world policy/firewall filtering (PF) tables were reported [7, 14–16] to
involve significant amounts of rules with ranges. In particular, the statistical analysis of
real-world rule databases in [17] shows that TCAM storage efficiency can be as low as

Figure 3.26 Range >1023 is expressed in terms of 6 sub-ranges in a TCAM.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 110 — #34

110 PACKET CLASSIFICATION

16 percent due to the existence of a significant number of rules with port ranges. Appar-
ently, the reduced TCAM memory efficiency due to range matching makes TCAM power
consumption, footprint, and cost an even more serious concern.

A widely adopted solution to deal with range matching is to perform range
preprocessing/encoding by mapping ranges to a short sequence of encoded bits, known
as bit-mapping. The idea is to view a d-tuple rule as a region in a d-dimensional rule space
and encode any distinct overlapped regions among all the rules so that each rule can be
translated into a sequence of encoded bits, known as rule encoding. Accordingly, a search
key, which is based on the information extracted from the packet header, is preprocessed to
generate an encoded search key, called search key encoding. Then, the encoded search key
is matched against all the encoded rules to find the best matched rule. Unlike rule encoding,
which can be pre-processed in software, search key encoding is performed on a per packet
basis and must be done in hardware at wire-speed.

3.5.2 Range Mapping in TCAMs

As stated above, when the range specification is used for the field without range encoding,
range splitting must be performed to convert the ranges into prefix formats to fit the bit
boundary. This increases the number of entries and could make TCAMs infeasible for some
classifiers that use the range specification. Liu [18] has suggested an efficient encoding
scheme of range classifier into TCAM. The basic algorithm expands TCAM horizontally
(using more bits per entry), and for a width limited application, an algorithm that allows
both horizontal and vertical expansion is proposed.

Rule Storing Organization. For each range field, an n bits vector B = b1, b2, . . . , bn

is used to represent it, where n is the number of distinct ranges specified for this field.
The B vector for a range Ei has 1 at bit position i, that is, bi = 1 and all other bits are
set to don’t care. This is based on the observation that even though the number of rules
in a classifier could be large, the number of distinct ranges specified for any range field is
very limited and exact match specification also happens frequently for a range field. The
bit vector representation for Table 3.10 is shown in Table 3.11 (n = 5 in this case). For
example, the range of greater than 1023 in R1 is represented by ‘xxxx1’.

Classification Scheme. A lookup key v ∈ [0, 2k] is translated into an n bit vector V =
v1, v2, . . . , vn. Bit vi is set to 1 if the key v falls into the corresponding range Ei, otherwise
it will be set to 0. Lookup key translation could be implemented as a direct memory lookup
since most of the range fields are less than 16-bit wide. A complete lookup key translation

TABLE 3.10 Simple Example Classifier for TCAM
Implementation

Ri Dest IP Addr (IP/mask) Dest Port Range Action

1 10.0.0.0/255.0.0.0 >1023 Act0
2 192.168.0.0/255.255.0.0 50–2000 Act1
3 192.169.0.0/255.255.0.0 80(http) Act2
4 172.16.0.0/255.255.0.0 23(telnet) Act3
5 172.16.0.0/255.255.0.0 21(ftp) Act4

Book1099 — “c03” — 2007/2/15 — 18:47 — page 111 — #35

3.5 TCAM-BASED ALGORITHMS 111

TABLE 3.11 Rules Stored in TCAM

Ri TCAM Rules

1 10.x.x.x xxxx1
2 192.168.x.x xxx1x
3 192.169.x.x xx1xx
4 172.16.x.x x1xxx
5 172.16.x.x 1xxxx

table for the example classifier for each possible lookup key value is shown in Figure 3.27.
For example, the right most bit vector is set to 1 for all the locations above 1023. Furthermore,
the second bit from the right between the locations 50 and 20 (including them) is also set
to 1. Next paragraph, some optimization can be further made for exact match. It is possible
to reduce the number of bits used to log2(m + 1), where m is the number of exact matches.

Figure 3.27 Lookup key translation table for the example classifier.

Book1099 — “c03” — 2007/2/15 — 18:47 — page 112 — #36

112 PACKET CLASSIFICATION

TABLE 3.12 Rules Stored in TCAM with Exact Match
Optimization

Ri TCAM Rules

1 10.x.x.x xxxx1
2 192.168.x.x xxx1x
3 192.169.x.x x01xx
4 172.16.x.x x10xx
5 172.16.x.x x11xx

The bit representation will contain two parts 〈Be, B〉, Be for exact matches, and B for all
others. Be = b1, b2, . . . , bt is a t bit vector, where t ≥ log2(m + 1).

For a normal range, 〈Be = 0, B〉 and its B portion is the same as before. For an exact
match, 〈Be = i, B = 0〉, if it is the ith exact match. In the previous example, if we use bit
2 and 3 as Be (where bit 1 is the left-most significant bit), the example classifier stored
in TCAM is shown in Table 3.12 and now only two bits are needed to represent the three
distinct exact matches. The lookup key translation table needs to be changed accordingly.
The lookup key also contains two parts 〈Ve; V〉, Ve corresponding to all exact matches and
V to the rest. Ve = 〈v1, v2, . . . , vt〉 is a t bit vector (e.g., b2 and b3 of the right column of
Table 3.12), and Ve = i if the lookup key v equals to the ith exact match, otherwise Ve = 0.
Assume that the classifier is stored in TCAM as shown in Table 3.12. A new packet arrives
with destination IP address 192.169.10.1 and port number 80. First, the port number is
indexed into the lookup key translation table (Figure 3.27). The resulting V = 10 because
80 falls in range 50–2000 but not range >1023. The resulting Ve = 01 because 01 is the
value assigned to exactly match the value of 80. Together with destination IP address, the
final result is rule 3.

Performance Comments. This scheme requires less TCAM storage space. Thus it can
accommodate a much larger number of rules in a single TCAM table and reduce system cost
and power consumption. Meanwhile, it also keeps the advantage of deterministic execution
time of TCAM devices. However, adding/deleting rules causes the change of bit vectors
and may require re-computation of the entire translation table, which is a time consuming
process.

REFERENCES

[1] S. Lyer, R. R. Kompella, and A. Shelat, “ClassiPI: an architecture for fast and flexible packet
classification,” IEEE Network, vol. 15, no. 2, pp. 33–41 (Mar. 2001).

[2] P. Gupta, “Routing lookups and packet classifications: theory and practice,” in Proc. HOT
Interconnects, Stanford, California (Aug. 2000).

[3] P. Gupta and N. Mckeown, “Algorithms for packet classification,” IEEE Network, vol. 15, no. 2,
pp. 24–32 (Mar. 2001).

[4] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvagel, “Fast and scalable layer four switching,”
in Proc. ACM SIGCOMM, Vancouver, Canada, pp. 191–202 (Aug. 1998).

Book1099 — “c03” — 2007/2/15 — 18:47 — page 113 — #37

REFERENCES 113

[5] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core routers: Is there an alter-
native to CAMs?” in Proc. IEEE INFOCOM’03, San Francisco, California, vol. 1, pp. 53–63
(2003).

[6] G. Zhang and H. J. Chao, “Fast packet classification using field-level trie,” in Proc. IEEE
GLOBECOM’03, San Francisco, California, vol. 6, pp. 3201–3205 (Dec. 2003).

[7] P. Gupta and N. Mckeown, “Packet classification on multiple fields,” in Proc. ACM
SIGCOMM’99, Harvard University, vol. 29, no. 4, pp. 147–160 (Aug. 1999).

[8] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding using efficient
multi-dimensional range matching,” in Proc. ACM SIGCOMM,Vancouver, Canada, pp. 203–214
(Sep. 1998).

[9] J. van Lunteren and T. Engbersen, “Fast and scalable packet classification,” IEEE Journal on
Selected Areas in Communications, vol. 21, pp. 560–571 (May 2003).

[10] M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space decomposition techniques for fast layer-4
switching,” in Conf. Protocols for High Speed Networks, Holmdel, New Jersey, vol. 66, no. 6,
pp. 277–283 (Aug. 1999).

[11] P. Gupta and N. McKeown, “Classification using hierarchical intelligent cuttings,” in Proc. HOT
Interconnects VII, Stanford, California (Aug. 1999).

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification using multidimensional
cutting,” in Proc. ACM SIGCOMM, Karlsruhe, Germany, pp. 213–224 (Aug. 2003).

[13] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple space search,” in Proc.
ACM SIGCOMM, Cambridge, Massachusetts, pp. 135–146 (Aug. 1999).

[14] F. Baboesu and G. Varghese, “Scalable packet classification,” in Proc. ACM SIGCOMM, San
Diego, California, pp. 199–210 (Aug. 2001).

[15] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, “Directions in packet
classification for network processors,” in Proc. Second Workshop on Network Processors (NP2),
Anahein, California (Feb. 2003).

[16] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using extended TCAMs,” in
Proc. International Conference of Network Protocol (ICNP), Atlanta, Georgia, pp. 120–131
(Nov. 2003).

[17] H. Che, Z. Wang, K. Zheng, and B. Liu, “Dynamic range encoding scheme for TCAM
coprocessors,” Technical report. [Online]. Available at: http://crystal.uta.edu/hche/dres.pdf.

[18] H. Liu, “Efficient Mapping of range classifier into Ternary-CAM,” in Proc. 10th Hot Intercon-
nects, Stanford, California, pp. 95–100 (Aug. 2002).

