CHAPTER 2

IP ADDRESS LOOKUP

2.1 OVERVIEW

The primary role of routers is to forward packets toward their final destinations. To this
purpose, a router must decide for each incoming packet where to send it next, that is, finding
the address of the next-hop router as well as the egress port through which the packet should
be sent. This forwarding information is stored in a forwarding table that the router computes
based on the information gathered by routing protocols. To consult the forwarding table,
the router uses the packet’s destination address as a key — this operation is called address
lookup [1]. Once the forwarding information is retrieved, the router can transfer the packet
from the incoming link to the appropriate outgoing link.

Classful Addressing Scheme. IPv4 IP addresses are 32 bits in length and are
divided into 4 octets. Each octet has 8 bits that are separated by dots. For example, the
address 10000010 01010110 00010000 01000010 corresponds in dotted-decimal notation
to 130.86.16.66. The bits in an IP address are ordered as shown in Figure 2.1, where the 1st
bit is the most significant bit (MSB) that lies in the leftmost position. The 32nd bit is the
least significant bit (LSB) and it lies in the rightmost position.

The IP address consists of two parts. The first part contains the IP addresses for networks
and the second part contains the IP addresses for hosts. The network part corresponds to the
first bits of the IP address, called the address prefix. We will write prefixes as bit strings of up
to 32 bits in [Pv4 followed by an asterisk(*). For example, the prefix 10000010 01010110*
represents all the 2'® addresses that begin with the bit pattern 1000001001010110. Alter-
natively, prefixes can be indicated using the dotted-decimal notation, so the same prefix can
be written as 130.86/16, where the number after the slash indicates the length of the prefix.

High Performance Switches and Routers, by H. Jonathan Chao and Bin Liu
Copyright © 2007 John Wiley & Sons, Inc.

25



26 IP ADDRESS LOOKUP

MSB LSB

1 2 3 30 31 32

Figure 2.1 IP address bit positions.

Since routing occurs at the network level to locate the destination network, routers
only forward packets based on network level IP addresses. Thus, all hosts attached to the
network can be stored in the router’s forwarding table by a single network IP address, known
as address aggregation. A group of addresses are represented by prefixes. An example of a
router’s forwarding table is shown in Table 2.1. Each entry in the forwarding table contains
a prefix, next-hop IP address, and output interface number. The forwarding information is
located by searching for the prefix of the destination address.

The Internet addressing architecture was first designed using an allocation scheme known
as classful addressing. Classful addressing defines three different sized networks of classes:
A, B, or C (Fig. 2.2). The classes are based on the amount of IP addresses contained in
the network partition. With the IPv4 address space of 32 bits, Class A has a network size
of 8 bits and a host size of 24 bits. Class B has a network size of 16 bits and a host size
of 16bits. Class C has a network size of 24 bits and a host size of 8 bits. Class D is for
multicasting applications.

The classful addressing scheme created very few class A networks. Their address space
contains 50 percent of the total IPv4 address space (23! addresses out of a total of 232).
Class B address space contains 16,384 (2!%) networks with up to 65,534 hosts per network.
Class C address space contains 2,097,152 (22) networks with up to 256 hosts per network.

Classless Inter-Domain Routing (CIDR) Addressing Scheme. The evolution and
growth of the Internet in recent years has proven that the classful address scheme is inflexible
and wasteful. For most organizations, class C is too small while class B is too large. The
three choices resulted in address space being exhausted very rapidly, even though only a
small fraction of the addresses allocated were actually in use. The lack of a network class
of a size that is appropriate for mid-sized organizations results in the exhaustion of the class
B network address space. In order to use the address space efficiently, bundles of class C
addresses were given out instead of class B addresses. This causes a massive growth of
forwarding table entries.

CIDR [2] was introduced to remedy the inefficiencies of classful addressing. The Inter-
net Engineering Task Force (IETF) began implementing CIDR in the early 1990s [2, 3].
With CIDR, IP address space is better conserved through arbitrary aggregation of network

TABLE 2.1 Router’s Forwarding Table Structure [1]
Destination Address Prefix Next Hop IP Address Output Interface

24.40.32/20 192.41.177.148 2
130.86/16 192.41.177.181 6
208.12.16/20 192.41.177.241 4
208.12.21/24 192.41.177.196 1
167.24.103/24 192.41.177.3 4




2.1 OVERVIEW 27

7 » 24 >
Class A 0
Network Host
14 > 16 >
Class B 10
Network Host
21 > 8 >
ClﬂSS C 110
Network Host
28
Class D 1110

Multicast network

Figure 2.2 Classful addresses [1].

addresses rather than being limited to 8, 16, or 24 bits in length for the network part. This
type of granularity provides an organization with more precise matches for IP address space
requirements. The growth of forwarding table entries is also slowed by allowing address
aggregation to occur at several levels within the heirarchy of the Internet’s topology. Back-
bone routers can now maintain the forwarding information at the level of the arbitrary
aggregates of networks, instead of at the network level only.

For example, consider the networks represented by the network numbers from
208.12.16/24 through 208.12.31 /24 (see Fig. 2.3) and in arouter all these network addresses
are reachable through the same service provider. The leftmost 20 bits of all the addresses
in this range are the same (11010000 00001100 0001). Thus, these 16 networks can be
aggregated into one ‘supernetwork’ represented by the 20-bit prefix, which in decimal
notation gives 208.12.16/20. Indicating the prefix length is necessary in decimal notation,
because the same value may be associated with prefixes of different lengths; for instance,
208.12.16/20 (11010000 00001100 0001%*) is different from 208.12.16/22 (11010000
00001100 000100*).

Address aggregation does not reduce entries in the router’s forwarding table for all cases.
Consider the scenario where a customer owns the network 208.12.21/24 and changes its
service provider, but does not want to renumber its network. Now, all the networks from
208.12.16/24 through 208.12.31/24 can be reached through the same service provider,
except for the network 208.12.21/24 (see Fig. 2.4). We cannot perform aggregation as
before, and instead of only one entry, 16 entries need to be stored in the forwarding table.
One solution is aggregating in spite of the exception networks and additionally storing



28 IP ADDRESS LOOKUP

208.12.16/24 | 110100000000110000010000%*

208.12.21/24 | 110100000000110000010101*

208.12.31/24 | 110100000000110000011111*

<

208.12.16/20 11010000000011000001*

Figure 2.3 Prefix aggregation [1].

208.12.16/24 208.12.21/24 208.12.31/24
——t—t ?‘ —t—t—t—t————t )I/
| |
0 Total IPv4 address space 232_1

Figure 2.4 Prefix ranges [1].

entries for the exception networks. In this example, this will result in only two entries in the
forwarding table: 208.12.16/20 and 208.12.21/24 (see Fig. 2.5 and Table 2.1). However,
now some addresses will match both entries because of the prefixes overlap. In order to
always make the correct forwarding decision, routers need to do more than search for a
prefix that matches. Since exceptions in the aggregations may exist, a router must find
the most specific match, which is the longest matching prefix. In summary, the address
lookup problem in routers requires searching the forwarding table for the longest prefix that
matches the destination address of a packet.

Obviously, the longest prefix match is harder than the exact match used for class-based
addressing because the destination address of an arriving packet does not carry with it the
information to determine the length of the longest matching prefix. Hence, we need to
search among the space of all prefix lengths, as well as the space of all prefixes of a given
length. Many algorithms have been proposed in recent years regarding the longest prefix
match. This chapter provides a survey of these techniques. But before that, we introduce
some performance metrics [4] for the comparison of these lookup algorithms.

208.12.21/24
208.12.16/20
L I\ 1 / ]

Total IPv4 address space |

0 \ 22|
These addresses match both

prefixes

Figure 2.5 Exception prefix [1].



2.2 TRIE-BASED ALGORITHMS 29

Lookup Speed. The explosive growth of link bandwidth requires faster IP lookups. For
example, links running at 10 Gbps can carry 31.25 million packets per second (mpps)
(assuming minimum sized 40-byte IP packets).

Storage Requirement. Small storage means fast memory access speed and low power
consumption, which are important for cache-based software algorithms and SRAM
(static RAM)-based hardware algorithms.

Update Time. Currently, the Internet has a peak of a few hundred BGP (Border Gateway
Protocol) updates per second. Thus, a certain algorithm should be able to perform 1k
updates per second to avoid routing instabilities. These updates should interfere little
with normal lookup operations.

Scalability. Tt is expected that the size of forwarding tables will increase at a speed of
25k entries per year. Hence, there will be around 250 k entries for the next five years.
The ability of an algorithm to handle large forwarding tables is required.

Flexibility in Implementation. Most current lookup algorithms can be implemented in
either software or hardware. Some of them have the flexibility of being implemented
in different ways, such as ASIC, a network processor, or a generic processor.

2.2 TRIE-BASED ALGORITHMS

2.2.1 Binary Trie

A trie structure is a multi-way tree where each node contains zero or more pointers to point
its child nodes, allowing the organization of prefixes on a digital basis by using the bits of
prefixes to direct the branching. In the binary trie (or 1-bit trie) structure [5], each node
contains two pointers, the O-pointer and the 1-pointer.

Data Structure. A node X at the level & of the trie represents the set of all addresses that
begin with the sequence of 4 bits consisting of the string of bits labeling the path from the
root to that node. Depending on the value of the (k& + 1)th bit, O or 1, each pointer of the
node X points to the corresponding subtree (if it exists), which represents the set of all route
prefixes that have the same (7 + 1) bits as their first bits. An example data structure of each
node (i.e., the entry in a memory) is shown in Figure 2.6, including the next hop address (if
it is a prefix node), a left pointer pointing to the left node location (with an address bit 0)
and a right pointer pointing to the right node location (with an address bit 1).

A prefix database is defined as a collection of all prefixes in a forwarding table. A prefix
database example is shown in Figure 2.6 [6], where the prefixes are arranged in an ascending
order of their lengths for easy illustration.

To add a route prefix, say 10111%*, simply follow the pointer to where 10111 would
be in the trie. If no pointer exists for that prefix, it should be added. If the node for the
prefix already exists, it needs to be marked with a label as being in the forwarding table (for
example, P;). The nodes in gray are prefix nodes. When deleting a route prefix that has no
children, the node and the pointer pointing to it are deleted and the parent node is examined.
If the parent node has another child or it is a gray node, it is left alone. Otherwise, that node
is also deleted and its parent node is examined. The deletion process is repeated up to the
trie until a node that has another child or a gray node is found.



30 IP ADDRESS LOOKUP

Prefix database

P1

P2 1% Next hop information

P3 00* (If a prefix node)

ig i?i: Left pointer Right pointer
P6  1000* Data structure of a node in
P7  11101* the binary trie

P8  111001*

P9 1000011°%*

Figure 2.6 Data structure of a 1-bit binary trie.

Route Lookup. Each IP lookup starts at the root node of the trie. Based on the value of
each bit of the destination address of the packet, the lookup algorithm determines whether
the left or the right node is to be visited. The next hop of the longer matching prefix found
along the path is maintained while the trie is traversed. An example is shown in Figure 2.6.
Suppose that a destination address 11101000 is given. The IP lookup starts at the root,
traverses the path indicated by the destination address, and remembers the last time a gray
node was visited. The first bit of 11101000 is 1, so we go to the right and get to the node
1*, which is a gray node, the longest prefix match so far. The 2nd—5th bits of the key are 1,
1, 0, and 1, respectively. So, we turn right, right, left, and right in sequence, and come to a
leaf node P7. It is a prefix node and its associated next hop information is returned.

Performance. The drawback of using the binary trie structure for IP route lookup is that
the number of memory accesses in the worst case is 32 for IPv4. To add a prefix to the
trie, in the worst case it needs to add 32 nodes. In this case, the storing complexity is
32N - S, where N denotes the number of prefixes in the forwarding table and S denotes
the memory space required for each node. In summary, the lookup complexity is O(W),
so is the update complexity, where W is the maximum length of the prefix. The storage
complexity is O(NW).

Variants of Binary Tries. The 1-bit binary trie in Figure 2.6 can be expanded to a
complete trie, where every bottom leaf node is a prefix. There will be 128 leaf nodes.
The data structure will be a memory with 128 entries. Each stores a prefix and can be
directly accessed by a memory lookup using the seven bits of the destination address. One
drawback is that the memory size becomes too big to be practical when the address has
32 bits, requiring a memory with 232 entries.

One way to avoid the use of the longest prefix match rule and still find the most specific
forwarding information is to transform a given set of prefixes into a set of disjoint prefixes.
Disjoint prefixes do not overlap, and thus no address prefix is itself a prefix of another. A
trie representing a set of disjoint prefixes will have prefixes at the leaves but not at internal
nodes. To obtain a disjoint-prefix binary trie, we simply add leaves to nodes that have only
one child. These new leaves are new prefixes that inherit the forwarding information of the
closest ancestor marked as a prefix. Finally, internal nodes marked as prefixes are unmarked.



2.2 TRIE-BASED ALGORITHMS 31

Figure 2.7 Disjoint-prefix binary trie.

For example, Figure 2.7 shows the disjoint-prefix binary trie that corresponds to the trie in
Figure 2.6. Prefixes P2a and P2b have inherited the forwarding information of the original
prefix P2, similar to other nodes such as Pla, P5b, P6a, P6b, and P6c. Since prefixes at
internal nodes are expanded or pushed down to the leaves of the trie, this technique is called
‘leaf pushing’ by Srinivasan and Varghese [7].

2.2.2 Path-Compressed Trie

Path compression technique was first adopted in the Patricia trees [8]. A path-compressed
trie is based on the observation that each internal node of the trie that does not contain a
route prefix and has only one child node can be removed in order to shorten the path from
the root node.

Data Structure. By removing some internal nodes, the technique requires a mechanism
to record which nodes are missing. A simple mechanism is to store in each node:

* A number, the skip value, that indicates how many bits have been skipped on the path.

A variable-length bit-string, segment, that indicates the missing bit-string from the last
skip operation.

The path-compressed version of the binary trie in Figure 2.6 is shown in Figure 2.8. The
node structure has two more fields — skip value and segment. Note that some gray nodes
have a skip value = 1 or > 1. For instance, for node P9, its skip value = 2 and the segment
is ‘11’. As compared to P9 in Figure 2.6, the P9 node in Figure 2.8 moved up the level
by 2 and missed the examination of two bits ‘11°. Therefore, when we traverse the trie in
Figure 2.8 and reach P9, the immediate two bits of the key need to be checked with the
2-bit segment.

Route Lookup. Suppose that a destination address 11101000 (i.e., the key) is given. The
route lookup starts at the root and traverses the path based on the destination address bits.
It also records the last gray node that was visited. The first bit of 11101000 is 1, so we go to
the right and get to the prefix node P2. As the second bit of the key is 1, we go right again,



32 IP ADDRESS LOOKUP

Prefix database

Pr *

P2 1%

P3  00*

P4 101*
P5s 111%*
P6  1000%*
P7 11101*
P8  111001*

P9  1000011*

Next hop information (If a prefix node)

Skip value Segment

Skip =1

Left pointer Right pointer

Data structure of a node in
the path-compressed trie

Figure 2.8 Path-compressed trie example.

and reach node P5. This node has a skip value of 1, meaning that a node is skipped on the
path. We then use the 3rd bits of the key to compare with the segment field ‘1’ (to verify we
have arrived at the correct node in the path). If a match is found, it indicates that we have
arrived at P5 correctly. As the 4th bit of the key is 0, we turn left; no skip value is found so
we move on. With the Sth bit a 1, we again turn right and get to node P7. Here, we reach
a leaf and no skip value is found. So, the lookup stops here, and the next hop information
corresponding to P7 is returned.

Performance. Path compression reduces the height of a sparse binary trie. When the tree
is full and there is no compression possible, a path-compressed trie looks the same as a
regular binary trie. Thus, its lookup and update complexity (the worst case) is the same as
a binary trie, O(W). Considering a path-compressed trie as a full binary trie with N leaves,
there can be N — 1 internal nodes between the root and each leaf node (including the root
node), as shown in Figure 2.9. Since the path can be significantly compressed to reduce the
internal nodes, the space complexity becomes O(N), independent of W.

7 internal nodes

Y
8 prefix nodes

Figure 2.9 Example of path-compressed trie with N leaves.



2.2 TRIE-BASED ALGORITHMS 33

2.2.3 Multi-Bit Trie

The lookup performance can be improved by using a multi-bit trie structure [7]. The multi-
bit trie structure examines several bits at a time, called the lookup stride, while the standard
binary trie only examines one bit at a time.

Data Structure. A multi-bit trie example is shown in Figure 2.10. Its prefix database is
the same as the one in Figure 2.6. Suppose we examine the destination address three bits
at a time, that is, the lookup stride is 3. Then a problem arises for the prefixes like P2 = 1*
that do not fit evenly in multiples of three bits. One solution is to expand a prefix like 1*
into all possible 3 bit extensions (100, 101, 110, and 111). However, prefixes like P4 = 101
and P5 = 111 are selected because they have longer length matches than those of expanded
prefixes of P2. In other words, prefixes whose lengths do not fit into the stride length are
expanded into a number of prefixes that fit into the stride length. However, expanded prefixes
that collide with an existing longer length prefix are discarded.

Figure 2.10 shows an expanded trie with a fixed stride length of 3 (i.e., each trie node
examines three bits). Notice that each trie node has a record of eight entries and each has
two fields: one for the next hop information of a prefix and one for a pointer that points
to the next child node. Consider, for example, entry 100 in the root node. It contains a
prefix (P2 = 100) and a pointer to the trie node containing P6. The P6 pointer also points
to another trie containing P9.

Node 1

Root node Prefix  Ptr
Prefix database Prefix  Ptr 000 P6 _ NOdeS
Prefix  Ptr

Pl * 000 P3 — 001| P6 ]
P2 1% 01| p3 \5000 o _
P3 00* _ 010| P6 — 001 — —

b4 1017 oo P1 | — o p6 | —
st oi| P1 | — 010 — | —
P6 1000* 100 — — ol — —

P7 11101* 100| P2 ol — [ =
P8 111001* 1001 P9 —
po 1000011% 101 P4 1ol — | — P e

1o| P2 | — = 1=
111| P5 110 P9 —
111 P9 —

Node 2

Prefix Ptr

000 — —

001| P8 _

010 P7 —

o11| P7 —

100 — —

101 — —

110 — —

111 — —

Figure 2.10 Multi-bit trie structure example.



34 IP ADDRESS LOOKUP

Node 1
Root node Prefix/Ptr
Prefix/Ptr 000 | P6
000| P3 001 | Pu3-| Node 3
001| P3 010 | P6 Prefix/Ptr
010| P1 011 | P6 000 | Po6
011| P1 100 | P2 001 | P6
100 | Ptrl 101 | P2 010| P6
101 p4 10| P2 011| P6
110| P2 111| P2 100 | P9
11| pu2 Node 2 101} P9
Prefix/Ptr 1o | P9

000| P5 111| P9

001 P8

010 | P7

011 P7

100 | PS5

101 P5

110| PS5

111 P5

Figure 2.11 Multi-bit trie structure example with each entry a prefix or a pointer to save memory
space.

Route Lookup. Let us use the example in Figure 2.10 and again suppose that the desti-
nation address is 11101000. The IP lookup starts at the root and traverses the path using
three address bits at a time while remembering the last prefix that was visited. The first three
bits of the key 111 are used as the offset address in the root node to find if the corresponding
entry contains a prefix (in this case, it contains P5). We then follow the pointer and move
to the next node. Then the 4-6th bits of the key 010 are used as an offset in the second
node. The corresponding entry contains P7’s next hop information and a pointer pointing
to a NULL address, indicating the end of the lookup.

Performance. The advantage of the k-bit trie structure is that it improves the lookup by
k times. The disadvantage is that a large memory space is required. One way to reduce
the memory space is to use a scheme called ‘leaf pushing’ described in Section 2.2.1. Leaf
pushing can cut the memory requirements of the expanded trie in half by making each
node’s entry contain either a pointer or next hop information but not both (as shown in
Figure 2.11 versus the one shown in Figure 2.10). The trick is to push down the next hop
information to the leaf nodes of the trie. The leaf nodes only have the next hop information,
since they do not have a pointer. For instance, P6’s next hop information at the entry 001 of
the top middle node is pushed down to the vacant locations of its child node (i.e., the right
most node).



2.2 TRIE-BASED ALGORITHMS 35

The lookup is performed in strides of k bits. The lookup complexity is the number of
bits in the prefix divided by k bits, O(W /k). For example, if W is 32 and k is 4, then
8 lookups in the worst case are required to access that node. An update requires a search
through W /k lookup iterations plus access to each child node (2¥). The update complexity is
O(W /k + 2%). In the worst case, each prefix would need an entire path of length (W /k) and
each node would have 2 entries. The space complexity would then be O((2F % N « W) k).

2.2.4 Level Compression Trie

The path-compressed trie in Section 2.2.2 is an effective way to compress a trie when nodes
are sparsely populated. Nilsson and Karlsson [9] have proposed a technique called level
compression trie (LC-trie), to compress the trie where nodes are densely populated. The
LC-trie actually combines the path-compression and multi-bit trie concepts to optimize a
binary trie structure.

Data Structure. The fixed-stride multi-bit trie (in Section 2.2.3) can improve lookup
performance, but it may incur redundant storage. However, from an angle of local scopes,
if we only perform multi-bit lookup wherever the sub-trie structures are full sub-trees, then
no redundant storage is needed in those nodes. The construction of the LC-trie is, in fact,
a process of transforming a path-compressed trie to a multi-bit path-compressed trie. The
process is to find the full sub-trees of a path-compressed trie, and transform them into
multi-bit lookup nodes. Therefore, information stored in each node of the LC-trie includes
those that are needed for both the path-compressed trie and the multi-bit trie lookup.

The LC-trie algorithm starts with a disjoint-prefix binary trie as described in Section 2.2.1,
where only leaf nodes contain prefixes. Figure 2.12 shows three different tries: (a) 1-bit
binary trie with prefixes at leaf nodes; (b) path-compressed trie; and (c) LC-trie. The LC-trie
needs only three levels instead of the six required in the path-compressed trie. Furthermore,
Figure 2.12 shows a straight-forward transformation from path-compressed trie to LC-trie,
as shown in the dashed boxes in Figures 2.12b and ¢, where the first three levels of the
path-compressed trie that form a full sub-trie are converted to a single-level 3-bit sub-trie
in the LC-trie.

Route Lookup. Let us again use the 8-bit destination address 11100000 as an example to
explain the lookup process. The lookup starts at the root node of the LC-trie in Figure 2.12c¢.
In this node, the multi-bit and path-compression trie lookup information shows ‘stride = 3’
and ‘skip = 0. “Stride = 3’ indicates that there would be 23 = 8 branches in this node
and that we should use (the next) 3 bits of the address to find the corresponding branch.
‘Skip = 0’ indicates that no path compression is involved here. The first three bits of the
address 111 are inspected, and we should take the (7 4+ 1) = 8th branch of this node. Then,
at the branched node, we have ‘stride = 1’ and ‘skip = 3’. ‘Stride = 1’ indicates that there
are only 2! = 2 branches in this node. ‘Skip = 3’ indicates that the following path of the
trie is path-compressed, and we should compare with the stored segment, and if it matches
then skip the next three bits of the IP address. We skip the next three bits 000 and examine
the fourth bit, 0. The bit O indicates that we should take the left branch of this node, and
then we come to node 13. On finding that node 13 is a leaf node, the lookup stops here, and
the next hop information corresponding to node 13 is returned.



36 IP ADDRESS LOOKUP

Stride=1, Skip=3

14

(©
Figure 2.12 (a) One-bit trie; (b) Path-compressed trie; (c) LC-trie.

Performance. Instead of only transforming strictly full sub-tries in the path-compressed
trie, we could transform nearly full sub-tries as well. An optimization proposed by Nilsson
and Karlsson [9] suggests this improvement under the control of a fill factor x, where
0 < x < 1. The transformation could be performed on this sub-trie when a k-level sub-trie
has more than 2% - x leaf nodes available.

Less than 1-Mbyte memory is required and 2 Mpackets/s (assuming average packet
size of 250 bytes) search speed is achieved when running on a SUN Sparc Ultra II



2.2 TRIE-BASED ALGORITHMS 37

workstation [9]. This is for an LC-trie built with a fill factor of 0.5 and using 16 bits
for branching at the root and a forwarding table with around 38,000 entries. However, using
a node array to store the LC-trie makes incremental updates very difficult.

An LC-trie searches in strides of k bits, and thus the lookup complexity of a k-stride
LC-trie is O(W /k). To update a particular node, we would have to go through W /k lookups
and then access each child of the node (2%). Thus, the update complexity is O(W /k + 2.
The memory consumption increases exponentially as the stride size (k) increases. In the
worst case, each prefix would need an entire path of length (W /k) and each node has 2%
entries. The space complexity would then be 02k « N« W) /k).

2.2.5 Lulea Algorithm

Degermark et al. [10] have proposed a data structure that can represent large forward-
ing tables in a very compact form. This solution is small enough to fit entirely in the
Level 1/Level 2 cache. This provides an advantage in that this fast IP route-lookup
algorithm can be implemented in software running on general-purpose microprocessors
at high speeds.

The key idea of the Lulea scheme is to replace all consecutive elements in a trie node
that have the same value with a single value, and use a bitmap to indicate which elements
have been omitted. This can significantly reduce the number of elements in a trie node and
save memory.

Basically, the Lulea trie is a multi-bit trie that uses bitmap compression. We begin with
the corresponding multi-bit ‘leaf-pushing’ trie structure given in Section 2.2.3. For instance,
consider the root node in Figure 2.11. Before bitmap compression, the root node has the
sequence of values (P3, P3, P1, P1, ptrl, P4, P2, ptr2), where ptrl is a pointer to the trie
node containing P6 and ptr2 is a pointer to the trie node containing P7. If we replace each
string of consecutive values by the first value in the sequence, we get P3, —, P1, —, ptrl,
P4, P2, ptr2. Notice the two redundant values have been removed. We can now get rid of
the original trie node and replace it with a bitmap 10101111 where the ‘0’s indicate the
removed position and a compressed list (P3, P1, ptrl, P4, P2, ptr2). The result of doing
bitmap compression for all four trie nodes is shown in Figure 2.13.

Data Structure. The multi-bit trie in the Lulea algorithm is a disjoint-prefix trie as
described in Section 2.2.1. As shown in Figure 2.14, level one of the data structure covers
the trie down to depth 16, level two covers depths 17 to 24, and level three depths 25 to 32.
A level-two chunk describes parts of the trie that are deeper than 16. Similarly, chunks at
level three describe parts of the trie that are deeper than 24. The result of searching a level
of the data structure is either an index into the next-hop information or an index into an
array of chunks for the next level.

The first level is essentially a complete trie with 1-64k children nodes, which covers
the trie down to depth 16. Imagine a cut through the trie at depth 16. Figure 2.15 shows
an example of partial cut. The cut is stored in a bit-vector, with one bit per possible node
at depth 16. Thus, 2'© bits = 64 kbits = 8 kbytes are required for this. The upper 16 bits
of the address are used as an index into the bit-vector to find the bit corresponding to the
initial part of an IP address.



38 IP ADDRESS LOOKUP

Root node

Ltlofrfoft i fr]

P3 - - - - -
P1< ------------- . .
Ptrlleeeeereeeeeneeennnenndd : .
J Y I R .
S R R R . :
Ptr2< -----------------------------------
A\ J Node 1 \ i Node 2
[1[1[1JoftrJofJofoO] [t]t]1JoJ1]ofJoJ]o]
Pole oo : P5 € :
Ptr3fe-- - : . P8 |lg----- : :
P6 [@-eeeet : P7 lg-evenn..l .
o B R P5 egeeeeeeennenanadd
- Node 3
[t]oJofo[I]oJo]O]
P6 " :
P9 ------------------

Figure 2.13 Example of a Lulea trie.

As shown in Figure 2.15, a bit in the bit-vector can be set to:

* One representing that a prefix tree continues below the cut. They are called a root head
(bits 6, 12, and 13 in Fig. 2.15).

* One representing a prefix at depth 16 or less. For the latter case, only the lowest bit in
the interval covered by that prefix is set. They are called a genuine head (bits 0, 4, 7,
8, 14, and 15 in Fig. 2.15).

* Zero, which means that this value is a member of a range covered by a prefix at a depth
less than 16 (bits 1, 2, 3, 5, 9, 10, and 11 in Fig. 2.15).

Level 1

o y | . ; 4 Level 2

30 Level 3

Figure 2.14 Three levels of the data structure [10].



2.2 TRIE-BASED ALGORITHMS 39

Depth 16

38 3w

Figure 2.15 Part of cut with corresponding bit-vector [10].

A pointer to the next-hop information is stored for genuine heads. Members behind
the genuine head use the same index. A pointer to the level two chunk that represents the
corresponding sub-trie is stored in the root heads.

The head information is encoded in 16-bit pointers stored in an array. Two bits of the
pointer encode what kind of pointer it is. The 14 remaining bits are either indices into the
next-hop information or into an array containing level two chunks. Note that there are as
many pointers associated with a bit-mask as its number of set bits.

Finding Pointer Groups. The bit-vector is divided into bit-masks of length 16 and there
are 2'2 = 4096 of those. Figure 2.16 is an illustration of how the data structure for finding
pointers corresponds to the bit-masks. The data structure consists of an array of code words
of all bit-masks and an array of base indices of one per four code words. The code words
consist of a 6-bit offset (0,3, 10, 11,...) and a 10-bit value (r1,r2,...).

The first bit-mask in Figure 2.16 has three set bits. The second code word thus has an
offset of three because three pointers must be skipped over to find the first pointer associated
with that bit-mask. The second bit-mask has seven set bits and consequently the offset in
the third code word is 3 + 7 = 10.

After four code words, the offset value might be too large to represent with six bits.
Therefore, a base index is used together with the offset to find a group of pointers. There
can be at most 64k pointers in a level of the data structure, so the base indices need to be
at most 16 bits (210 = 64k). In Figure 2.16, the second base index is 13 because there are
13 set bits in the first four bit-masks. This explains how a group of pointers is located. The
first 12 bits of the IP address are an index to the proper code words. The first 10 bits are an
index to the array of base indices.

How to find the correct pointer in the group of pointers will now be explained. This is
what the 10-bit value is for (1,72, ... in Fig. 2.16). The value is an index into a table that
maps bit-numbers in the IP address to pointer offsets. Since bit-masks are generated from
a complete trie, not all combinations of the 16 bits are possible. As shown by Degermark
et al. [10], the number of possible bit-masks with length 16 is only 678. They are all stored
in a table, called maptable, as shown in Figure 2.17. An index into a table with an entry
for each bit-mask only needs 10 bits. The content of each entry of the maptable is a
bit-mask of 4-bit offsets. The offset specifies how many pointers to skip over to find the
wanted one, so it is equal to the number of set bits smaller than the bit index. For instance,
if the 2nd 4-bit mask in Figure 2.16 is chosen and the low 4 of high 16 bits of IP address is



40 IP ADDRESS LOOKUP

?k b::’]"’;i}?; 100010001_0000000 |101 1100010 001010 |1000000000 000000 |100000001 0000000 |10000 0001010 1000|
eac its e

b
$+-—
Al

Code word array:
(4K entries) 0 | ol

1
:(6 bitsy (10 bit) = m—mmmmmm S ——

o | |
1

Base index array:
(1k entries)

]
|
0

4k bit-masks:
(each 16 bits)

|100010001 0000000 [101 1100010 001010\|1000000000 000000 ||00000001 0000000 |10000 0001010 1000|
=

v [0 [ 0 [ 5] @ (0] 6 [ [ @ Jo] 5]
(@dkentries) T ——————— 5 >
i% bits) (10 bits) 1/,_______2 _________ Io——- 4
/
Base index array: I 0 | | ..........
(1k entries) 0 I
4k bit-masks:

(each 16 bits)

|100010001 0000000 |101 1100010 001010 |1000000000 OOQOOO |100000001 0000000 |IOOOO 0001010 1000|
=

Code word array: | 0 | 1
(4k entries) i
:(6 bits) (10 bits)
Base index array: I 0
(1k entries)

4k bit-masks:
(each 16 bits)

|100010001 0000000 |101 1100010 001010 |1000000000 000000 |IOOO'00001 0000000 |100000001 0101000 |
T

Code word array: 0 | 1 | 3 | 2
(4k entries)

[
:(6 bits) (10 bits)

!
Base index array: 0
(1k entries)

4k bit-masks: |
(each 16 bits)

Code word array: 0 | rl | 3 | 5 |
(4K entries) 10 o
I6 bits) (10 bits) 5
| / St as
Base index array: i 0 i
(1k entries) 0 1

Figure 2.16 Bit-masks versus code words and base indices.



2.2 TRIE-BASED ALGORITHMS 4

IP addresses

/ o
\ Maptable: 0 1 2 3 4 eeeee 15
677

[ 10 [|4] 16 |

Figure 2.17 Finding the pointer index [10].

‘1010’, the 4-bit offset in the Maptable will be 5, counting five ‘1’ from the left to the bit
location of ‘1010°.

Route Lookup. The following steps are required to search the first level of the data
structure. The array of code words is called code and the array of base addresses is called
base. Figure 2.17 illustrates the procedure. The variables are defined as below:

ix := high 12 bits of IP address

bit :=low 4 of high 16 bits of IP address
code word := code[ix]

ten := ten bits from codeword

six := six bits from codeword

bix := high 10 bits of IP address

pix := base[bix] + six + maptable[ten][bit]
pointer := levell_pointers[pix]

The index of the code word (1x), the index of the base index (bix), and the bit number
(bit) are first extracted from the IP address. Then the code word is retrieved and its
two parts are extracted into ten and six. The pointer index (pix) is then obtained by
adding the base index, the 6-bit offset six, and the pointer offset obtained by retrieving
column bit fromrow ten of maptable. After the pointer is retrieved from the pointer
array, it will be examined to determine if the next-hop information has been found or if the
search should continue on to the next level.

Performance. The Lulea algrorithm provides a very compact data structure and fast
lookups. The data structure has 150-160 kbytes for the largest forwarding tables with 40,000
routing entries, which is small enough to fit in the cache of a conventional general-purpose
processor. A 200 MHz Pentium Pro or a 333 MHz Alpha 21164 with the table in the cache
can perform a few million IP lookups per second without special hardware and no traffic
locality is assumed. Lulea does not support incremental updates because of the algorithm’s
tight coupling property. In many cases, the whole table should be reconstructed. Thus,
routing protocols that require frequent updates make this algorithm unsuitable.



42 IP ADDRESS LOOKUP

The Lulea trie uses the k-bit stride multi-bit method. The lookup complexity is the same
as a multi-bit trie, O(W /k). The bitmap compression technique applied to the multi-bit trie
makes it almost impossible to perform incremental updates. The data structure may need
to be completely rebuilt. The memory consumption is the same as the k-bit stride multi-bit
trie. Thus, the space complexity is O(2F % N = W) /k).

2.2.6 Tree Bitmap Algorithm

Eatherton et al. [11] have proposed a data structure of lookup scheme based on multi-bit
expanded tries without any leaf pushing and bitmap compression, called Tree Bitmap. The
lookup scheme simultaneously meets three criteria: scalability in terms of lookup speed
and table size, the capability of high-speed updates, and feasibility in size to fit in a Level 3
forwarding engine or packet processor with low overhead. Tree Bitmap has flexibility to
adapt to the next generations of memory technology. To the best of our knowledge, Cisco
CRS-1 uses this lookup scheme.

Data Structure. In the Tree Bitmap algorithm, a trie node, as shown in Figure 2.18, is
fixed in size, containing a head pointer to the block of child nodes, an extending paths
bitmap, an internal next hop information bitmap, and a pointer to the external result array
of next hop information associated with prefixes stored in the node. Since update time is
bounded by the size of a trie node, Tree Bitmap uses trie nodes of no more than eight
strides. By taking advantage of modern burst-based memory technologies, Tree Bitmap
keeps the trie nodes as small as possible to be within the optimal memory burst size. Thus,
all information about the node being examined can be fetched into the processor in one
memory reference and processed to find the longest prefix match.

Prefix database Tree bitmap _——
Pl * Data structure /l [1]: Prefix node
e = = : Empty node!
P21 | Root node /| |
P3 00* | e I 0 |
P4 101* ! Head pointer  Internal next ol
P5 111%* | result array ~ hop bitmap /I | g_!’
o 1000 P R G RS ETNGEG =
P ¥ I [ Resutepur [1]0[1[1[0[0[0[ .. ' — — — — —
P7 11101* Result PL e —o————__ 1 T 1
* Result array esult < _1 .
P8 111001 eth r | 4______|
% ol nexthop ResultP2 ¢! —=+———————————
P9 1000011* information I | Head pointer 2/ |
Result P3 [« —1 . to the block of Extending | I
Root P1 | child nodes paths bitmap / I ) |
node | AN
P2 A Childpir [ofofofo[i[1oli] 4 4 —' = — — —
T 1 '
- T et S
1| | j===
Node P4\. Node ps \ H ;\~ -{
1 3 \_‘7!_. = ._..!_. =
Po I Nodel I Node2 I Node3 | - Child array
Node A P6 ! P4 !P5S.PTM
2 P7 AL LA Y
Child ! ! Child
d [ —_—— |
\' P8 pointer | ! | ! | } pointer
P9 \ )'I Node4 | 1 NodeS |1~ ;
Node 4 Node 5 : P9 : : P8 :

Figure 2.18 Data structure of Tree Bitmap.



2.2 TRIE-BASED ALGORITHMS 43

A multi-bit node could be seen as a unibit node of multiple levels. It has to have two
functions: it has to point to all its child nodes and it has to point to next hop information for
prefix nodes within its internal structure. Tree Bitmap uses two bitmaps to implement these
two functions individually. Tree Bitmap uses different multi-bit node grouping schemes
from the multi-bit trie described in Section 2.2.3. As shown in Figure 2.18, all length 3
prefixes are pushed and stored along with the length O prefixes in the next node down. For
example, P5 is pushed down to Node 3 in Level 2; P4 is pushed down to Node 2, which is
created to store P4. However, in the multi-bit trie of Figure 2.10, P4 and PS5 are stored in
the root node.

All child nodes of a given trie node are stored contiguously. In Figure 2.18, all child
nodes of the root node, Node 1, Node 2, and Node 3, are contiguous in memory. Thus, only
one head child pointer is needed in the root node to point to all its children with the help of
the extending paths bitmap, which contains a bit for all possible 2" child nodes (r: stride
size) and is used to calculate the offset from the head pointer. In Figure 2.18, of the eight
possible leaves, only the fifth, the sixth, and the eighth leaf nodes have pointers to children.
Thus, the extending paths bitmap is 00001101 by setting the corresponding bit positions
from the left to be ‘1°.

The next hop information associated with the internal prefixes of each trie node is stored
in a separate array associated with the trie node. Only the head pointer to the array is
necessarily kept in the trie node, together with an internal next-hop information bitmap,
which is used to record every prefix stored within the node and to calculate the offset from
the head pointer. In a r-bit trie, the first bit of the bitmap is associated with prefix of length 0.
The two following bits are associated with prefixes of length 1, the four following bits are
associated with prefixes of length 2, . .. and 2! following bits are associated with prefixes
of length r — 1 for a total of 2" — 1 bits. In Figure 2.18, the internal bitmap of the root node
is obtained by traversing through the 3-level unibit trie nodes from top to bottom and from
left to right, and replacing the prefix nodes with 1s and non-prefix nodes with Os.

Route Lookup. Figure 2.19 illustrates how to search for the longest prefix match of
‘11101100’ in the Tree Bitmap data structure. According to the stride of the root node, three
in the example, the first three bits of ‘11101100’ ‘111°, are used as an index to look up the
extending path bitmap, resulting in a ‘1’ (Step 1). This means there is a valid child pointer.
The number of 1s is counted to the left in the bitmap to compute the offset, I = 3 (Step 2).
Since the head pointer to the block of child nodes, H, is known as well as the size of each
child node, S, the pointer to the child node can be easily calculated as H + (I x S), which
points to Child Node 3 (Step 3).

Then, the internal next hop information bitmap is checked to see if there is a prefix
match (Step 4). It uses a completely different calculation from Lulea. As mentioned earlier,
in a r-bit trie, Tree Bitmap pushes length r prefixes down to be stored as length O in the
next level. Thus, the right most bit of ‘111’ is removed at first, resulting in ‘11*’. From the
previous example about how to construct an internal bitmap, it is easy to conceive that ‘11%*’
corresponds to the seventh bit of the internal bitmap, where ‘0’ is found. No prefix is found
(Step 5). One more right most bit of ‘11*’ is removed, resulting in ‘1*’. The corresponding
third bit of the internal bitmap is checked. ‘1’ is found, meaning there is a prefix found
(Step 6). The number of ‘1’s before the matched prefix at Step 6 is 1. It indicates the offset
of the prefix match in the result array. The pointer to the matched prefix is calculated by
using the head pointer to the result array and the offset, resulting in P2, which is stored as



44 IP ADDRESS LOOKUP

Stepl - (5
IIl: Prefix node I
IE: Empty node |

IORO,

Searchfor: |[111/011/00

Prefix database 14
Pl * Result P1
P Result P2 |«
P3 00* esu it
P4 101* Result P3 |« — - | [ Childpi€ JO[O[0[O] 1]1]O[1
P5 111* /i r
P6 1000* e e
P7 11101% LT P IS
P8 111001* ke |
P9 100001 1% Fommmmmm Noﬁ;_l el H
| —_ | AT S
I'| Result ptr |0|1|0|0|0|0|0|:| Result ptr |1|O|0|0|0|0|0||| Result gr [ 1]0]0J0[1]0]0]'
Result P6 <—————_: ————————— i | |
Result P4 [« - T_T ———————————————— i
L g P —
Result PS |4~ | | Chid pr J0[T]0]0[0[0]0]0} Chitd pe ToTo]o]o]o[o[o[0]]| chid pr o[ o[o[oo[o[0}

o ! Node4 | e ' NodeS5 |

, , I
\ ] 1T Resultprr [0]0[1]0]0]0]0] Y 1] Resultprr [1]0]0]0[0]0]0]
Result P7 fq—— ==L —————————~ | Result P8 [¢ == ——l- - ————— = i
[ cnild prr JOJOJO]OJO]O[O]O]! [ Child prr JOJOJOJOJOJO[O]O]!
| |

Figure 2.19 Example of route lookup.

prefix match (Step 7). The information of Child Node 3 is loaded from memory and another
iteration begins.

The next 3-bit chunk from ‘11101100, ‘011°, is extracted (Step 8). No extending path
withindex 011 is found in Node 3 (Step 9). The right most bit of ‘011’ is removed, resulting
in ‘01*’. The fifth bit of the internal bitmap is found to be ‘1’, indicating a prefix found
(Step 10). The number of 1s to the left of the matched prefix is 1. The prefix match is P7
(Step 11). The prefix match found in the lowest level is the longest one. When there are no
more child nodes, the search stops. The next hop information of P7 is retrieved from the
result array (Step 12).

Performance. Similar to the Lulea algorithm, described in Section 2.2.5, Tree Bitmap
uses multi-bit tries and bitmaps to compress wasted storage in trie nodes and achieve fast
lookup speeds. However, Tree Bitmap uses a completely different encoding scheme that
relies on two bitmaps per node to avoid leaf pushing, which makes update inherently slow
as in the Lulea algorithm. Tree Bitmap allows not only fast searches comparable to the
Lulea algorithm, but also fast update.

Tree Bitmap takes advantage of memory technology and processing power. It performs
complex processing in one memory access per trie node, as opposed to three memory
references required by the Lulea algorithm. It trades off algorithm complexity for less
memory access. Tree Bitmap is tunable over a wide range of architectures.



2.2 TRIE-BASED ALGORITHMS 45

2.2.7 Tree-Based Pipelined Search

Most tree-based solutions for network searches can be regarded as some form of tree
traversal, where the search starts at the root node, traverses various levels of the tree,
and typically ends at a leaf node. The tree-based solution has optimal memory utilization
but needs multiple times memory access per packets according to the depth of searching
tree. Tree-based pipelined searching methods are then introduced to avoid the bottleneck in
memory access. It allows different levels of the tree to be partitioned onto private memories
associated with the processing elements. Tree-based searches are pipelined across a number
of stages to achieve high throughput, but this results in unevenly distributed memory. To
address this imbalance, conventional approaches use either complex dynamic memory
allocation schemes (dramatically increasing the hardware complexity) or over-provision
each of the pipeline stages (resulting in memory waste). The use of large, poorly utilized
memory modules results in high system cost and high memory latencies, which can have
a dramatic effect on the speed of each stage of the pipelined computation, and thus on the
throughput of the entire architecture.

Balance Memory Distribution in a Pipelined Search Architecture. A novel
architecture for a network search processor, which provides both high execution throughput
and balanced memory distribution by dividing the searching tree into subtrees and allocating
each subtree separately has recently been described [12]. This method allows searches to
begin at any pipeline stage to balance the separated memory rather than the prior pipelined
network search algorithms, which require all searches to start from the first pipeline stage
(the root node of searching tree), going next to the second, and so on.

Figure 2.20 shows a tree-based search structure. To keep the explanation simple, let us
assume that the tree has four subtrees, called Sy, ..., S4. The separation of the subtree can
be determined by using a hash function based on information in the packet header. For IP
lookups the hash function is made up of a set of variable length IP prefixes. For packet
classification, the hash function may use some of the most significant bits in two or three
different fields of the packet header. Furthermore, the search structure is implemented on
a four-stage pipeline, called Py, ..., P4, corresponding to the depth of each subtree with
four levels. Each level in the subtree can handle multiple bits lookup, for example, by ‘Tree
Bitmap’ scheme [11] in Section 2.2.6. The first level of the subtree S, called Sll, is stored

Figure 2.20 Example of a basic tree-based search structure. The tree is split into four subtrees
S1,...,54. Each subtree has up to four levels. We call Si] the level j into the subtree S; [12].



46 IP ADDRESS LOOKUP

and processed by the pipeline stage P;. The second level Sf is stored and processed by the
pipeline stage P, and so on. The second subtree is processed starting with pipeline stage
P, S) on Py, S3 on P3, 53 on P4 and S5 on Py, respectively. Similarly, the third subtree S3
starts on stage P3, while the fourth subtree S4 starts on pipeline stage P4. This allocation
scheme tries to balance the load on each of the pipeline stages. By doing so, the pipeline
allocates nearly equal amounts of memory to each stage.

In practice, the number of subtrees should be more than or equal to the number of
pipeline stages (processing elements), thus implying multiple subtrees may have the same
start node. The number of the maximum depth of each subtree should be less than or equal
to the number of pipeline stages. However, this tree-based pipelined search architecture
with balanced memory distribution by allowing search tasks to start execution from any
pipeline stage impacts the throughput of the system. This is because of potential conflicts
in memory access between the new tasks and the ones that are in execution.

Avoid Memory Access Conflicts in the Pipelined Search Architecture. A
random ring pipeline architecture with two data paths is described and shown in Figure
2.21 to eliminate the possible conflicts. All tasks are inserted at the first pipeline stage and
traverse the pipeline twice, irrespective of their starting stage (for execution) in the pipeline.
Each pipeline stage accommodates two data paths (virtual data paths — they can share the
same physical wires). The first data path (represented by the top lines) is active during the
odd clock cycles and it is used for a first traversal of the pipeline. The second data path is
traversed during even cycles and allows the task to continue its execution on the pipeline
stages that are left. Once a task finishes executing, its results are propagated to the output
through the final stage. Each pipeline stage works at a frequency f = 2 x F where F is the
maximum throughput of the input.

For example, consider the four-stage pipeline in Figure 2.21. A task that must start
executing in pipeline stage 3 is inserted in pipeline stage 1. It traverses the pipeline only in
the odd cycles until it reaches stage 3 where it starts executing. Its results are forwarded to
pipeline stage 4 also during an odd cycle. However, the results of the execution on stage 4
are moved forward to pipeline stage 1 for execution during the next even cycle. The task
finishes its execution on pipeline stage 2. The final results are moved to the output via
pipeline stages 3 and 4 during even cycles.

This solution guarantees the following features: (1) an output rate equal to the input
rate; (2) all the tasks exit in order; and (3) all the tasks have a constant latency through the
pipeline equal to M x (1/F) where M is the total number of pipeline stages.

IN

P, P, P, P, ouT

— ——— Data path active during odd slots

IR
N

—————— Data active during evenslots

Figure 2.21 Random ring pipeline architecture with two data paths: first path is active during the
odd clock cycles, used during the first traversal of the pipeline; second path is active during the even
clock cycles to allow a second traversal of the pipeline [12].



2.2 TRIE-BASED ALGORITHMS 47

2.2.8 Binary Search on Prefix Lengths

The idea of this algorithm is that the longest prefix matching operation can be decomposed
into a series of exact matching operations, each performed on the prefixes with the same
length. This decomposition can be viewed as a linear search of the space of 1,2,..., W
prefix lengths. An algorithm that performs binary searches on this space was proposed by
Waldvogel et al. [13].

Data Structure. The prefixes of a forwarding table are stored by length respectively, say
sub-table H, Hs,...,H,. More specifically, a sub-table (say H;) stores all the prefixes
with a length of i. To reduce the exact matching time during route lookup, this algorithm
uses hashing for the exact matching operation among prefixes of the same length (in the
same sub-table). In other words, each sub-table uses a different hash function to hash all its
prefixes. Each prefix will be associated with a hash value. If there are more than one prefix
hashed to the same value, it is called ‘hash collision’. They are linked together for one by
one exact matching during route lookup.

Route Lookup. Given a destination address, a linear search on the space of prefix
lengths requires probing each of the W hash tables, H, H, ..., H,. It requires W hash
operations and W hashed memory accesses. To shoot the probing process, the algorithm
first probes H,, /2. If a node is found in this hash table, there is no need to probe tables
Hi,H,...,Hy>1. This is due to the requirement of longest prefix match. If no node is
found, hash table H,,/2 11, . . ., H,, need not be probed. The remaining hash tables are probed
again in a binary search manner.

Figure 2.22 illustrates how the algorithm works. The table on top of Figure 2.22 gives
the five example prefixes in the forwarding table. There are three different lengths, 8, 16,
and 24, of these prefixes, so three hash tables Hg, Hi¢, and Hy4 are constructed in Fig-
ure 2.22. In addition to five prefixes in the three sub-tables, there is an entry (90.2) in
Hig. It is called a marker because it is not a prefix in the forwarding table but an inter-
nal node to help determine the direction of the next branch, either going to the lower
part or the higher part. Given an IP address (90.1.20.3), we start the lookup from Hjg
(since W = 32 for IPv4 and W /2 = 16) and find a match at the entry (90.1). Then, we
process to H»4 and another match is found at the entry (90.1.20). The lookup terminates
here because no more hash tables are available to be searched. The prefix (90.1.20) is
returned as the result. Figure 2.23 illustrates an example of the binary search on prefix
lengths.

Performance. The algorithmrequires O(log, W) hashed memory accesses for one lookup
operation, taking no account of the hash collision. So does the update complexity. This data
structure has storage complexity of O(NW) since there could be up to W markers for a
prefix-each internal node in the trie on the path from the root node to the prefix. However,
not all the markers need to be kept. Only the log, W markers that would be probed by the
binary search algorithm need be stored in the corresponding hash tables. For instance, an
IPv4 prefix of length 22 needs markers only for prefix lengths 16 and 20. This decreases
the storage complexity to O(N log, W).



48 IP ADDRESS LOOKUP

Example prefixes
90/8
90.1/16

90.1.10/24

90.1.20/24

90.2.30/24

Prefix length HaSt.l table
pointer
8 H (90.1), (90.2)
, /\ N
16 Hi SN AN
/ N
24 H
2 \L| (90.1.10), (90.1.20), (90.2.30) ‘

Figure 2.22 Binary search example on prefix lengths.

2.2.9 Binary Search on Prefix Range

Lampson et al. [14] showed how to apply a binary search to perform longest prefix match-
ing lookup. This algorithmic approach to IP lookups views a prefix database as a set of
intermingled ranges, where each prefix is expanded to two endpoints in a number line.

Data Structure. The left column of Figure 2.24a shows a sample prefix database with an
assumption of 6-bit addresses. To apply a prefix-range-based binary search on this set, two
endpoints are generated for each prefix by padding Os and 1s, respectively, as shown in the
right column of Figure 2.24a. These endpoints are mapped to a number line as shown in
2.24b. A table containing six endpoints based on these expanded prefixes is shown in Figure
2.24c. Each of the endpoints (excluding the last one) actually denotes the left boundary of a
specific prefix range (total of five prefix ranges in the example). Another two fields (the ‘=’
and the ‘>’ fields) are created for each endpoint. This indicates the corresponding longest
matching prefix when the destination address falls within the prefix range (‘>") following
the boundary or just falls on the (left) boundary (‘=") of the prefix range, as shown in the
right column of Figure 2.24c. These are all pre-computed.

Route Lookup. The lookup process of a given destination address is actually the process
of a linear search for the nearest left boundary to the destination address in the forwarding
table (since we only keep the ‘=" and ‘>’ fields, but not ‘<’, we only find the left but not
right boundary). Let us use the prefix database in Figure 2.24 as an example and assume
the destination address to be 101011. Then lookup the address in the forwarding table is
actually to find which of the six entries is the nearest left boundary to 101011. For instance,
we can see that the key falls into the range of P2 by mapping the given key to the number
line. Binary search is a very efficient way to search a linear space. The first time, the key
(destination address) 101011 is compared with the [6/2] = third entry 101111. Thena ‘<’



2.2 TRIE-BASED ALGORITHMS

49

/(192.168.2.144)
Prefix length 1| 2 ] =] 8 | esaca | 16 | oooeeoee | 20 [ 21 | 22 [oo= | 24 | ooeeee= | 32
HaSh table ptr l‘l] HZ - .\HS e I}IIG e J{Z() "I;IZI kHZZ - 'HZ4 'HSZ
A~
~Node.
v
(192.168.2.144) ‘\‘
Prefix length 1] 2 == 8| o | 16| === 12021 |22]|=|24 | === |32
Hash table ptr T R e o | L, b, R, | = s |,
(192.168.2.144) ‘
Prefix length 1| 2 | =] 8 | oomem | 16| =oe=o== | 20 | 21 |22 |===| 24 | === | 32
Hash table ptr | 1 GH, | == [oH, | == 1o | see=ses | Ho0 b, WH, [ [H,, | == [H,,
| SAAANmA~

(192.168.2.144) —

Prefix length 1| 2 | | 8 | esese | 16 | @eececee | D0 | 21 | 22 |®o= | 24 | oceesces | 32
Hash table ptr H [o Hy [ oo [(H | ooeee P Wt P 100 00 X% o SN el P2

/
B E E

(192.168.2.144) W

Prefix length L | 2 [ == 8 | weese [ 16| ooemem=e |20 |21 |22 |===| 24 | ==e=e== [32
Hash table ptr Hlg Hy| === |gfg | == 6] T B T N el P Y ol

Figure 2.23 Example of the binary search on prefix lengths.



50 IP ADDRESS LOOKUP

Prefix database Range

P1. 1% 100000 -111111

P2:  101* 101000 -101111

P3:  1101%* 110100 110111
(@)

L P1 L
P . P2 . . P3 . o
P -

: ;101011 : ; : :
100800 101)900 101111 110100 110111 111111

Y Y
Range 1 Range 2 Range 3 Range 4 Range 5
()
= >
100000 Pl Pl
P1
TR 01000 P P
P2 >
— 101111 P2 P1
— 110100 P3 P3
Ly
P3— |
— 110111 P3 P1

111111 PI —
(c)

Figure 2.24 Example for binary search on prefix range.

is returned (meaning that the entries behind the third one need not be probed), so a second
search of those ahead of third entry is needed. At the second time, the key is compared
with the [3/2] = 2nd entry, and a ‘>’ is returned. There is no entry between the second
and third ones causing the search to stop there. P2 in the ‘>’ field of the second entry is the
result.

Performance. There should be 2N segment points for a prefix database size of N
when each prefix generates two endpoints. If a k-way search is used, the search time in
the worst case will be log, 2N. Once a prefix is added or deleted, the range sequence
is changed and the content of N memory locations storing the original N ranges need
to be updated. The update complexity and memory space are both O(N). It has been
reported that by using a 200-MHz Pentium Pro-based machine and a practical for-
warding table with over 32,000 route entries, the worst-case time of 490ns and an
average time of 100ns for IP route lookups were obtained [14]. Only a 0.7-Mbyte
memory was used. A drawback of this algorithm is that it does not support incremental
updates.



2.3 HARDWARE-BASED SCHEMES 51
2.3 HARDWARE-BASED SCHEMES

2.3.1 DIR-24-8-BASIC Scheme

Gupta et al. [15] proposed a route lookup mechanism that can achieve one route lookup
every memory access when implemented in a pipeline fashion in hardware. It is called the
DIR-24-8-BASIC scheme. This corresponds to approximately 100 Mlookups/sec with the
10-ns SDRAM technology.

Data Structure. The DIR-24-8-BASIC has two level searches as shown in Figure 2.25.
The first-level search uses the first 24 bits and the second-level search (if necessary) uses
the combination of index and the remaining 8 bits. The scheme makes use of the two
tables shown in Figure 2.26, both stored in SDRAM. The first table (called TBL24) stores
all possible route pre-fixes that are up to, and including, 24 bits long. This table has 224
entries, addressed from 0.0.0 to 255.255.255. Each entry in TBL24 has the format shown
in Figure 2.27. The second table (TBLIong) stores all route prefixes in the forwarding table
that are longer than 24 bits.

Assume for example that we wish to store a prefix X in an otherwise empty forwarding
table. If X is less than or equal to 24 bits long, it needs only be stored in TBL24: the first
bit of the entry is set to zero to indicate that the remaining 15 bits designate the next hop
information. If, on the other hand, the prefix X is longer than 24 bits, we then use the entry

Level 1

32 Level 2
IDO ID1 ID2 ID3 1ID4 1ID5 ...
(Index)
Figure 2.25 Two levels of the data structure.
L TBL24
Destination o N
address 2-* entries
0 0] >
24 1] TBL long Next hop
220 entries information
é > >
24
> Selector
8
31

Figure 2.26 DIR-24-8 BASIC architecture.



52 IP ADDRESS LOOKUP

If longest route with this 24-bit prefix is <25 bits long:

0 Next hop

If longest route with this 24-bit prefix is >24 bits long:

1 Index into 2nd table

Figure 2.27 TBL24 entry format.

in TBL24 addressed by the first 24 bits of X. We set the first bit of the entry to one to indicate
that the remaining 15 bits contain a pointer to a set of entries in TBLlong.

In effect, route prefixes shorter than 24 bits are expanded. For example, the route prefix
128.23/16 will have entries associated with it in TBL24, ranging from the memory address
128.23.0 through 128.23.255. All 256 entries will have exactly the same contents (the next
hop corresponding to the routing prefix 128.23/16). With the cost of a large memory, we
can find the next hop information within one memory access.

TBLIong contains all route prefixes that are longer than 24 bits. Each 24-bit prefix that
has at least one route longer than 24 bits is allocated 28 = 256 entries in TBLlong. Each
entry in TBL/ong corresponds to one of the 256 possible longer prefixes that share the single
24-bit prefix in TBL24. It needs to be only 1 byte wide if we assume that there are fewer
than 255 next-hop routers, this assumption could be relaxed if the memory was wider than
1 byte because we simply store the next-hop in each entry of the second table.

When a destination address is presented to the route lookup mechanism, the following
steps are taken: (1) We perform a single memory read yielding 2 bytes using the first 24 bits
of the address as an index to the first table TBL24; (2) If the first bit equals zero, then the
remaining 15 bits describe the next hop information; (3) Otherwise (if the first bit is one),
we multiply the remaining 15 bits by 256, add the product to the last 8 bits of the original
destination address (achieved by shifting and concatenation), and use this value as a direct
index into TBLIong, which contains the next hop information.

Consider the following example, we can see how prefixes, 10.54/16 (A), 10.54.34/24
(B), 10.54.34.192 /26 (C), are stored in the two tables as shown in Figure 2.28. The first route
includes entries in TBL24 that correspond to the 24-bit prefixes from 10.54.0 to 10.54.255
(except for 10.54.34). The second and third routes require that the second table be used.
This is because both of them have the same first 24 bits and one of them is more than 24 bits
long. In TBL24, we insert a one followed by an index (in the example, the index equals 123)
into the entry corresponding to the 10.54.34 prefix. In the second table, we allocate 256
entries starting with memory location 123 x 256. Most of these locations are filled in with
the next hop information corresponding to 10.54.34 route (B), and 64 of them [those from
(123 x 256) 4 192 to (123 x 256) + 255] are filled in with the next hop corresponding to
the 10.54.34.192 route (C).

Performance. The advantages associated with the basic DIR-24-8-BASIC scheme
include: (1) Generally, two memory accesses are required. These accesses are in sepa-
rate memories that allow the scheme to be pipelined; (2) This infrastructure will support an
unlimited number of routes, except for the limit on the number of distinct 24-bit prefixed
routes with length greater than 24 bits; (3) The total cost of memory in this scheme is the



2.3 HARDWARE-BASED SCHEMES 53

Key to table entries
A =10.54/16

B = 10.54.34/24

C =10.54.34.192./26

TBL24 TBLlong
Entry Entry
number : Contents : number : Contents :
10.53.255 | t----1-----1 123 x 256 B
10.54.0 0| A 123 x 256 + 1 B
10.54.1 0| A 123 x 256 + 2 B
: : : : 256 entries
10.54.33 o A 123 x 256 + 191 B allocated to
10.54.34 1 (123 123x256 +192 || C 10.54.34
10.54.35 ol A 123x256+193 || C prefix
1054255 || 0 | A 123x 256 + 255 || C
10.55.0 |1 : :

Figure 2.28 Example of two tables containing three routes.

cost of 33 Mb of SDRAM. No exotic memory architectures are required; and (4) The design
is well-suited for hardware implementation.

The disadvantages are: (1) Memory is used inefficiently and (2) Insertion and deletion
of routes from this table may require many memory accesses.

2.3.2 DIR-Based Scheme with Bitmap Compression (BC-16-16)

Huang [16] proposed a route lookup scheme combining the concepts of Lulea algorithms’
bitmap compression (Section 2.2.5) and DIR-24-8’s direct lookup. The most straightforward
way to implement a lookup scheme is to have a forwarding table in which an entry is
designated for each 32-bit IP address, as depicted in Figure 2.29. This design needs only
one memory access for each IP route lookup, but the size of the forwarding table, next-hop
array (NHA), is huge (232 bytes = 4 GB).

An indirect lookup can be employed to reduce the memory size (see Fig. 2.30). Each
IP address is split into two parts: (a) segment (the higher 16 bits) and (b) offset (the lower
16 bits). The segmentation table has 64K entries (219} and each entry (32 bits) records
either the next hop information (port number, if value <255) or a pointer (if value >255)
pointing to the associated NHA. Each NHA consists of 64K entries (2!°) and each entry (8
bits) records the next hop (port number) of the destination IP address. For a destination IP
address a.b.x.y, the a.b is used as the index of the segmentation table and the x.y is employed
as the index of the associated NHA, if necessary. For a segment a.b, if the length of the
longest prefix belonging to this segment is less than or equal to 16, then the corresponding
entries of the segmentation table store the output port directly, and the associated NHA
is not necessary. On the other hand, if the length of the longest prefix belonging to this



54 IP ADDRESS LOOKUP

— 32 Bits ———

IPv4 address

Directly spread
for
exactly matching

(T T T [ Qeveweeeerereneeeel T [ T ] |

ll Next hop array (4GB) i

Figure 2.29 Direct lookup mechanism.

segment is greater than 16, then an associated 64 KB NHA is required. In this design, a
maximum of two memory accesses are needed for an IP route lookup.

Although the indirect-lookup scheme furnishes a fast lookup (up to two memory
accesses), it does not consider the distribution of the prefixes belonging to a segment. A
64 KB NHA is required as long as the length of the longest prefix belonging to this segment
is greater than 16. The size of the associated NHA can be reduced further by considering the
distribution of the prefixes within a segment. The IP address is still partitioned into segment
(16 bits) and offset (<16 bits).

Data Structure. Figure 2.31 shows Huang’s lookup mechanism. Four tables are used,
the 2'-entry Segment Table (Seg Table), the Code Word Array (CWA), the Compressed
Next Hop Array (CNHA), and the Next Hop Array (NHA).

16 16
[~ Bits * Bits

Value < 256 => Next hop (Without NHA)
Value > 255 => Pointer

Segment Format

Segmentation table Pointer/Next hop
(64K entries) 32 Bits

1Pv4 address | Segment |  Offset

LLIT [T T T 1]
offsete. | | offset | [ offset | wrrrrmssnien Offset | | offset
64 KB 64 KB 64 KB 64 KB 64 KB
Next hop array Next hop array Next hop array Next hop array Next hop array

Figure 2.30 Indirect-lookup mechanism.



2.3 HARDWARE-BASED SCHEMES 55

Seg table

b29-b32 Mask

CWA Map x)

Map Base CNHA

——

Next hop

(Base,x)
(base = ptr, offset = b17-b28) NHA

k<3
(base = ptr, offset = b17-b19)

Figure 2.31 Multi-bit trie algorithm with bitmap compression technique in BC-16-16.

Similar to the DIR-24-8, the segment table in BC-16-16 is with the size of 64 KB entries,
and each one (32 bits) is divided into three fields: F (Flag, 1 bit), pointer/next hop (27 bits)
and offset length (4 bits) (as shown in Fig. 2.32). The first field indicates if the second field
contains a pointer to the next level table structure or a next hop index; the second field
records either the next hop (port number, if value <255) of the routing, or a pointer (if value
>255) pointing to the associated NHA or a second level table structure (CWA-CNHA). The
offset length field shows the size of NHA table, in terms of the power of 2. If the size is not
greater than eight (i.e., field value k < 3), the pointer will point to an entrance of a common
NHA (a table containing a series of next hop index). If the size is greater than eight (i.e.,
field value >3), the pointer will point to a CWA. We can decode the CNHA and find out the
next hop by searching the CWA. The frameworks of the CWA and the CNHA are shown in
Figures 2.33 and 2.34, respectively.

| F (1 bit) | Pointer[Next hop (27 bits) Offset length k (4 bits)

Figure 2.32 Segment table entry format.

¢—— Code word —————

t— 16Dbits  —p-— 16 bits —|

212 [ 1000000010000000 0 1000000010000000 | 2 -——
[ Map —--— Base —

Figure 2.33 Code word array (CWA).



56 IP ADDRESS LOOKUP

Next hop array

2. [2[2]2]2[2[8[8[8[8[8[7[7[7[6]6]6] -
2 [ [0fofoTol1Tolo o o[1To o 1[0 o] - L1040 0]
‘“u,\ Bit map e
\'\\ Compressed next hop array ,,-""‘

cwml2ls]1]e] =

Figure 2.34 Compressed next hop array (CNHA).

Each Code Word in the CWA is composed of 2 parts: Map and Base. The (Bit)
Map indicates the distribution of the next hops, while Base is the summing-up of the ‘1’s
in the previous Maps. Each bit in the Maps corresponds to an entry in the original NHA,
and the ‘1’s in the bitmap indicate the beginning of a prefix area. The NHA with 2?3 entries
is compressed into the CNHA as shown in Figure 2.34. By counting the ‘1’s in the bitmap,
we can find out the next hop in the CNHA.

Route Lookup. The first 16 bits (segment) of the incoming IP address are used to lookup
the Seg Table. If the most significant bit (F field) is a ‘0’, indicating the following field
contains a next hop index (output port number), then the lookup process stops and the next
hop index is returned. Otherwise, if the F field is a ‘1°, then we inspect the offset length
field. If the offset length <3, we use the pointer field as the base address, and the (16 + 1)th
to (16 + offset length)th bits of the IP address as the offset address to lookup the NHA
table, and return the associated result. If offset length >3, we should then lookup the CWA
table with the following steps: (1) Use the pointer field as the base address, and the 17th to
28th bits as the offset address to find the corresponding Code Word in the CWA table, and
get the corresponding Map and Base; (2) Define the 29th to 32nd bits of the IP address to
be p, and calculate the number of ‘1’s in the most significant p bits in the Map field of the
Code Word, say x; (3) Use Base as the base address and x as the offset address to lookup
the CNHA table, and return the associated result (next hop index).

Performance. The basic idea of this lookup scheme is derived from the Lulea algorithm
in Section 2.2.5, which uses bitmap code to represent part of the trie and significantly reduce
the memory requirement. The main difference between BC-16-16 and the Lulea algorithm
is that the former is hardware-based and the latter is software-based. The first-level lookup
of the BC-16-16 uses direct 16-bit address lookup while the Lulea scheme uses bitmap code
to look up a pointer to the next level data structure.

BC-16-16needs only a tiny amount of SRAM and can be easily implemented in hardware.
Based on the data obtained from [17], a large forwarding table with 40,000 routing entries
can be compacted to a forwarding table of 450—470 kbytes. Most of the address lookups
can be done by one memory access. In the worst case, the number of memory accesses for a
lookup is three. When implemented in a pipeline in hardware, the proposed mechanism can
achieve one route lookup every memory access. This mechanism furnishes approximately
100 M route lookups per second with current 10 ns SRAM.



2.3 HARDWARE-BASED SCHEMES 57

However, this algorithm does not support incremental updates. When the CWA table
needs to be updated, the whole second level table, including the associated CWA and
CNHA should be reconstructed.

2.3.3 Ternary CAM for Route Lookup

Basic TCAM Scheme. CAM is a specialized matching memory that performs parallel
comparison. The CAM outputs the location (or address) where a match is found. Conven-
tional CAM can only perform exact matching, when presenting a parallel word to the input,
and cannot be applied to CIDR 1P route lookup. A ternary CAM (TCAM) stores each entry
with a (val, mask) pair, where val and mask are both W-bit numbers. For example, if W = 6,
a prefix 110* is stored as the pair (110000, 111000). Each TCAM element matches a given
input key by checking if those bits of val for which the mask bit is 1 match those in the key.

The logical structure of a TCAM device is shown in Figure 2.35. Whenever a matching
operation is triggered, the 32-bit destination IP address will be compared with all the
TCAM entries bit by bit, respectively and simultaneously. Since there may be multiple
matches found at the same time, priority resolution should be used to select a match with
the highest priority as the output. Many commercial TCAM products are order-based, such
that the priority is determined by the memory location. The lower the location, the higher
is the priority. Namely the ith TCAM has higher priority than the jth TCAM, if i < j.
The priority arbitration unit selects the highest priority matched output from the TCAMs.
For instance, an IP address 192.168.0.177 fed to the TCAM in Figure 2.35 results in four
matches at the locations of 1, 1003, 1007, and 65535. The location of 1 is selected.

The forwarding table is stored in the TCAM in decreasing order of prefix lengths, so that
the longest prefix is selected by the priority encoder. As shown in Figure 2.35, the group
of 32-bit prefixes are at the bottom of the TCAM. Note that there are some empty spaces

Ternary CAM

Default

route 65535 0/0 >

-

24-bit
prefixes

|4
—_

Associated data Next hop
storage —  route
(SRAM/DRAM) information

—_

=

S

98]
y

Priority encoder
lowest physical address wins

25-bit
| | prefixes

prefixes

P

192.168.0.177
Figure 2.35 Logic structure of a TCAM device.



58 IP ADDRESS LOOKUP

in some groups reserved for adding prefixes in the future. The default route is located at
the very top of the TCAM chip. Its mask value is 0, which guarantees that it will match
with any input IP address. Only when there is no match from all the locations below it, will
it be selected by the priority arbitrator. The output from the TCAM is then used to access
RAM, in which the next hop information is stored in the same location as the prefix in the
TCAM.

Performance. TCAM returns the result of the longest matching prefix lookup within
only one memory access, which is independent of the width of the search key. And the
implementation of TCAM-based lookup schemes are commonly used because they are
much simpler than that of the trie-based algorithms. The commercially available TCAM
chips [18, 19] can integrate 18 M-bit (configurable to 256k x 36-bit entries) into a single
chip working at 133 MHz, which means it can perform up to 133 million lookups per
second. However, the TCAM approach has the disadvantage of high cost-to-density ratio
and high-power consumption (10-15 Watts/chip) [20].

2.3.4 Two Algorithms for Reducing TCAM Entries

TCAM-based IP route lookup is fast and easy to implement, but it also has high system cost
and power consumption. Liu et al. [21] proposed two simple schemes to circumvent the
above drawbacks. The TCAM size can be reduced by minimizing the amount of redundancy
that exists among the prefixes in the forwarding table. Reducing the TCAM size will save
on cost and power consumption.

Prefix Pruning. Figure 2.36 shows a situation where a part of the prefix trie is given.
Assume that P1 and P2 have the same forwarding information. Then, P2 is actually a
redundant prefix because deleting P2 will not affect the lookup result in any way. The direct
ancestor of P2 (i.e., P1) on the prefix trie contains the same forwarding information (to
port 2) with P2. For a longest matching prefix lookup that should terminate at P2 originally,
it will terminate at P1 if P2 is pruned.

Many real-life IP forwarding tables have a substantial number of redundant prefixes.
Pruning the redundant prefixes before storing them into TCAM will significantly reduce
the TCAM requirement. For instance, an original prefix table in Figure 2.37 with seven
prefixes can be reduced to a table with only four prefixes. It is reported that ~20-30 percent
of the prefixes are redundant. This equates to ~20-30 percent TCAM space that can be
saved by using the prefix pruning technique [21].

P1=01%, Port 1

P2 =011%, Port 2

P3 =0110%, Port3

Figure 2.36 Pruning example.



2.3 HARDWARE-BASED SCHEMES 59

# Prefix Mask Next hop port # Prefix Next hop port
P; 110011000 | 11111100 4 P, | 100110% 4
P, [11111100 | 11111100 7 P, | 111110% 7
P3 (10001100 | 11111100 5 Py | 100011% 5
P, 110001000 | 11111000 5 P, | 10001% 5
Ps 11010000 | 11110000 4 Ps | 1101% 4
Ps | 11110000 | 11110000 7 Po | 1111% 7
P; | 10010000 | 11110000 4 P; | 1001%* 4

Pg=1111%*
P; =1001* 6
1000* 7
Port 4 Port 7
P, =10001*
Port 5
P; =100011* P, =100110* P,=111110%
Port 5 Port 4 Port 7
# Prefix Mask Next hop port
P; & P, | 10001000 | 11111000 5
P, & P; | 10010000 | 11110000 4
P, & P | 11110000 | 11110000 7
Ps 11010000 | 11110000 4

Figure 2.37 Compacted table using prefix pruning.

Mask Extension. TCAM is used for ternary matching, and not just prefix matching.
The main difference between these two kinds of matching is that prefix matching needs
the mask to be all ‘1’s in the most significant bit and all ‘0’ in the rest less significant bit.
Ternary matching uses free types of mask. The main idea of mask extension is to extend
the prefix-match-kind of masks to the ternary-match-kind of masks in the TCAM-based
route lookup scheme. In this case, some TCAM entries in the prefix-match-kind can be
represented by only one ternary-match-kind entry. For instance, the seven entries in an
original prefix table can be fully represented by the five entries in the mask extended table
(Fig. 2.38), when ternary-match-kind of masks are used. It is reported that nearly 20-30
percent of the original TCAM entries can be further saved if the mask extension technique
is adopted [21].

Performance. Real-life forwarding tables can be represented by much fewer TCAM
(ternary match) entries, typically 50-60 percent of the original size by using the above
two techniques. Prefix pruning would cause no change in prefix update complexity.
Mask extension increases update complexity. Many prefixes are associated with oth-
ers after mask extension, which results in the obstacles of performing incremental
updates.



60 IP ADDRESS LOOKUP

# Prefix Mask | Next hop port

Py 10011100 [11111100 7 # Prefix Mask | Next hop port
P, |10001100 11111100 7 P, & P, 10001100 [ 11101100 7

P; (11011100 [11111100 7 ,—> P, & P5{10011100 [ 10111100 7

P4 |10001000 11111000 5 P, (10001000 | 11111000 5

Ps [11010000 | 11110000 4 Ps & P7 (10010000 | 10110000 4

Pe |11110000 |11110000 7 Ps (11110000 | 11110000 7

P, |10010000 |11110000 4

Figure 2.38 Compacted table using mask extension.

2.3.5 Reducing TCAM Power — CoolCAMs

TCAMs are fast and simple to manage, but they suffer from high power consumption.
Minimizing the power budget for TCAM-based forwarding engines is important to make
them economically viable. Zane et al. [22] proposed some algorithms to make TCAM-
based forwarding tables more power efficient. Present-day TCAM provides power-saving
mechanisms by selectively addressing small portions of the TCAM, called blocks. A block
is a contiguous, fixed-size chunk of TCAM entries, usually much smaller than the size of the
entire TCAM. The key idea for the CoolCAMs architecture is to split the entire forwarding
table into multiple sub-tables or buckets, where each bucket is laid out over one or more
TCAM blocks. Two different table-splitting schemes have been proposed: Bit-Selection
Architecture and Trie-Based Table Partitioning [22].

Bit-Selection Architecture. Figure 2.39 shows a fixed set of bits (labeled as suitable
ID) of the input IP address used to hash to one of the buckets (the shaded area in the data
TCAM). Then, the IP address is compared to all the entries within the selected buckets and
the index of the matched entry is used to address the associated SRAM to get the next hop
information. The bit-selection logic in front of the TCAM is a set of muxes that can be
programmed to extract the hashing bits from the destination address and use them to index
to the appropriate TCAM bucket. For example, in Figure 2.39, each of the three 32 : 1
muxes uses a 5-bit value (c0, c1, and ¢2) to pick one bit from the incoming 32-bit address.
The set of hashing bits can be changed over time by reprogramming the selectors of the
muxes.

Because only a very small percentage of the prefixes in the core forwarding tables (less
than 2 percent [22]) are either very short (<16 bits) or very long (>24 bits), they are grouped
into the minimum possible number of TCAM blocks and will be searched for every lookup.
The remaining 98 percent of the prefixes that are 16 to 24 bits long, called split set, are
partitioned into buckets.

Assume that the total number of buckets K = 2% is a power of 2. Then the bit selection
logic extracts a set of k hashing bits from the destination address and selects a bucket to be
searched. As in the example of Figure 2.39, the total number of buckets is K = 8§ and the
number of hashing bits is k = 3. The hashing bits should be chosen from the first 16 bits,
which is the minimum length of a prefix in the split set. On the other hand, if k" of the
hashing bits are in bit positions larger than the length of a prefix, this prefix needs to be
replicated in 2" buckets. For example, if we choose k' = 2 bits from bit positions 19 and



2.3 HARDWARE-BASED SCHEMES 61

o .

> —  Suitable ID
EGH)
M

Figure 2.39 Forwarding engine architecture for using bit selection to reduce power consumption.

The three hashing bits are selected from the 32-bit destination address by setting the appropriate 5-bit
values of c0, c1, and c2.

Associated
Data TCAM SRAM
Destination __ | Bit-selection [\ _
address “|_logic | Suitable ID
T ARE
| cOcl c2 \ Matched
| \ Next
\ \ Searched > ho
‘, \\ blocks index P
| AN
I
\ \
“ c0
5
Destination Y _
address | o
I
|
|
|
|
|
|
|

20 as hashing bits, then for a 18-bit prefix, it should be extended to 2K (or 4) 20-bit prefixes
and stored in the four corresponding buckets.

Trie-Based Table Partitioning. This approach uses a prefix trie (i.e., the 1-bit trie as
shown in Fig. 2.6) to get the ID of the proper TCAM bucket. Figure 2.40 illustrates the
prefix trie contained in a small-sized TCAM called the index TCAM. Each input is first fully
searched in the index TCAM and then addressed into an index SRAM which contains the
ID of the TCAM bucket.

Trie-based table partitioning works in two steps. In the first step, a binary routing trie
is constructed from a given forwarding table. In the second step, subtrees or collections of
subtrees of the 1-bit trie are successively carved out and mapped into individual TCAM
buckets. The second step is called the partitioning step. There are two different partitioning
schemes and are described below. Figure 2.41 shows a 1-bit trie that will be used as an
example in both schemes. Here, the number of forwarding table prefixes in the subtree
rooted at a node v is defined as the count of v. For any node u, the prefix of the lowest

Data TCAM Associated
SRAM
Index TCAM Index SRAM
Destination| Matched_ Suitable ID‘
address index Matched Next
Searched >
Fully searched blocks index hop

Figure 2.40 Forwarding engine architecture for the trie-based power reduction schemes.



62 IP ADDRESS LOOKUP

O*

0100*
01000*
0110%*
01100*
01101*
10*

1101* 0100%*
110100*
110101*
11011*

110111+ 110100%  110101* 110111%
(@) )
Figure 2.41 (a) Example of forwarding table; (b) corresponding 1-bit trie.

11011*

01000*  01100* 01101*

common ancestor of u (including u itself) that is in the forwarding table is called the
covering prefix of u. For example, both nodes A and C in Figure 2.41b have the covering
prefix A. If there are no nodes in the path of a certain node to the root whose prefix is in the
forwarding table, the covering prefix of this node is nil, such as B.

Subtree Splitting. Let N denote the number of prefixes in a forwarding table and b the
maximum number of prefixes in a TCAM bucket. This algorithm produces a set of K €
[[N/b], [2N/b]] TCAM buckets, each with a size in the range [[b/2], b] (except possibly
the last bucket, whose size is in the range [1, b]), and an index TCAM of size K. During
the partitioning step, the entire trie is traversed in post-order looking for a carving node,
which is a node v whose count is at least [b/2] and whose parent exists and has a count
greater than b. Every time a carving node v is encountered (not necessary a prefix), the
entire subtree rooted at v is carved out and the prefixes in the subtree are placed into a
separate TCAM bucket. Next, the prefix of v is placed in the index TCAM and the covering
prefix of v is added to the TCAM bucket. This ensures a correct result is returned when
an input address that matches an entry in the index TCAM has no matching prefix in the
corresponding subtree. Finally, the counts of all the ancestors of v are decreased by the
count of v. When there are no more carving nodes left in the trie, the remaining prefixes
(if any) are put in a new TCAM bucket with an index entry of an asterisk (x) in the index
TCAM.

Figure 2.42 shows how subtrees are carved out of the 1-bit trie from Figure 2.41. The
number at each node u denotes the current value of count(u). The arrows show the path
along with count (1) is updated in each iteration, while the circle denotes the subtree that is
carved. Table 2.2 shows the final results.

Post-order Splitting. This algorithm partitions the forwarding table into buckets that each
contain exactly b prefixes (except possibly the last bucket). The algorithm traverses the
1-bit trie in post-order and successively carves out subtree collections that form a bucket.
If a node v is encountered such that the count of v is b, a new TCAM bucket is created,
the prefix of v is put in the index TCAM and the covering prefix of v is put in the TCAM
bucket. If count(v) is x such that x < b and the count of v’s parent is >b, then a recursive
carving procedure is performed. Denote the node next to v in post-order traversal as u. Then
the subtree rooted at u is traversed in post-order, and the algorithm attempts to carve out a



2.3 HARDWARE-BASED SCHEMES 63

Step 3 Step 4
© (d)

Figure 2.42 Four iterations of the subtree-split algorithm (with parameter b set to 4) applied to the
1-bit trie from Figure 2.41.

TABLE 2.2 Four Resulting Buckets from the Subtree-Split Algorithm

Index Bucket Prefixes Bucket Size Covering Prefix
010%* 0100*, 01000* 2 0*

0* 0%*,0110%,01100*, 01101* 4 0*
11010%* 110100*, 110101* 2 1101*

* 10*, 1101*, 11011%*, 110111* 4 —

subtree of size b — x from it. In addition, the x entries are put into the current TCAM bucket
(a new one is created if necessary), and the prefix of v is added to the index TCAM and
made to point to the current TCAM bucket. Finally, when no more subtrees can be carved
out in this fashion, any remaining prefixes less than b in number are put in a new TCAM
bucket. An asterisk () entry in the index TCAM points to the last bucket. Figure 2.43 shows
a sample execution of the algorithm with b = 4 and Table 2.3 lists the final result.

Performance. The complexity for the post-order traversal is O(N). Updating the counts
of nodes all the way to root when a subtree is carved out gives a complexity of O(NW /b).
This is where W is the maximum prefix length and O(N/b) is the number of subtrees carved
out. The total work for laying out the forwarding table in the TCAM buckets is O(N). This
makes the total complexity for subtree-split O(N + NW /b). It can be proved that the total



64 IP ADDRESS LOOKUP

Step 1 Step 2 Step 3
(@) ) ()

Figure 2.43 Three iterations of the post-order split algorithm (with parameter b set to 4) applied to
the 1-bit trie from Figure 2.41.

TABLE 2.3 Three Resulting Buckets from the Post-Order Split Algorithm

i Index; Bucket Prefixes Size Covering Prefix

1 010% 01100%,01101*  0100%*, 01000*, 01100%*, 01101* 4 0% 01100% 01101*
2 0%, 10*, 110100* 0%, 0110%, 10*, 110100* 4 0%, 10*, 110100*
3 1* 110101%*, 1101%*, 11011*, 110111* 4 —

running time for post-order split is also O(N + NW /b). The drawback of subtree-split is
that the smallest and largest bucket sizes vary by as much as a factor of 2.

This method requires the entire index TCAM to be searched every time. The algorithm
has to ensure that the index TCAM is small enough as compared to the data TCAM and does
not contribute significantly to the power budget. The size of index TCAM for subtree-split
is exactly the number of buckets in data TCAM. Post-order split adds at most W + 1 entries
to the index TCAM and W covering prefixes to the bucket in the data TCAM because the
maximum number of times for carve-exact procedure is W + 1, which equals the number
of prefixes added to the index TCAM for any given TCAM bucket.

Experimental results with real-life prefix database show that all three methods can
dramatically reduce power consumption in practice. Even with only eight buckets, the
bit-selection algorithm results in reduction factors of about 7.55; and subtree-split and
post-order split of 6.09 and 7.95, respectively.

2.3.6 TCAM-Based Distributed Parallel Lookup

Zheng et al. [23] proposed an ultra-high throughput and power efficient TCAM-based
lookup scheme. The throughput of TCAM-based lookup is determined by the TCAM
access speed. The memory access rate increases ~7 percent per year. This is far behind
the optical transmission increase rate that roughly doubles every year [24]. By using the
chip-level-parallelism technique, we can improve the lookup throughput and so meeting the
needs of the next generation routers. However, if one just duplicates a forwarding table into
multiple copies and stores each copy into a TCAM device, the cost and power consumption
will be prohibitively high.

By analyzing several real-life forwarding tables, it has been observed that the prefixes in
a forwarding table can be approximately evenly partitioned into groups, called ID groups.



2.3 HARDWARE-BASED SCHEMES 65

@ 1500 Il PacBell @ 2000 Il AADS ||
X X
k) ©
o s 1500
2 1000 by
[e] [e]
o} 5 1000
o o
g 500 g
E 2 500
0 0
0 5 10 15 0 5 10 15
ID of the groups ID of the groups
1500 -
@ @ 2000 Bl West Mac ||
= X
k) ©
2 1000 & 1500
k] ©
g E 1000
E 500 E
e 2 500
0 0
0 5 10 15 0 5 10 15
ID of the groups ID of the groups

Figure 2.44 Prefixes distribution among ID groups in four real-life forwarding tables.

The partition is based on a few certain bits of the prefixes. Figure 2.44 illustrates 16 ID
groups created by using the 10—13th bits of the prefixes in the forwarding table of the routers
at four popular sites. Note that using more significant bits of the IP address may not obtain
uniform classification, while using less significant bits may need to expand many short
prefixes to long ones. Using the 10—13th bits of the IP addresses as their ID bits seems to
be a good choice.

Data Structure. Suppose that there are K (e.g., K = 4) TCAM chips and each TCAM
chip has n (e.g., n = 5) partitions. Each ID group is approximately equal to N /16 prefixes,
where N denotes the total number of prefixes in the forwarding table. These ID groups are
then distributed to K TCAM chips (each ID group is stored in a TCAM). The goal is to have
incoming packets that belong to different ID groups access the TCAM chips as evenly as
possible. More TCAM chips working in parallel results in a higher lookup throughput.

In order to further balance the lookups among the TCAM chips, some of the ID groups
with large traffic load ratio may be stored in multiple TCAM chips. For example, ID group
0,4 and 11 are stored twice in the example in Figure 2.45. Therefore, the lookups for these
three ID groups may be shared between the TCAM chips that have copies of them.

Route Lookup. An implementation architecture for the distributed parallel lookup
scheme is shown in Figure 2.46. For a given IP address to be searched, firstly, 4 bits
(10-13th bits) are extracted to determine which TCAM chips contain the ID group that
matches the IP address. This is implemented by the Indexing Logic. The output will be
multiple TCAM candidates because of the redundant storage. A Priority Selector will pick



66

32

IP ADDRESS LOOKUP

ID=11
ID=12
ID=15
TCAM #K

TCAM
#1

TCAM
#2

TCAM
#K

ID=0 ID=0
Partition #1
Partition #2 | D=1 D=4
Partition #n | D=4 ID=11
TCAM #1 TCAM #2
Figure 2.45 Example of the TCAM organization.
: ‘Indexing logic  §
. #1 :
. + Partition
. * number
: # :
. ¢ Partition
ID. « number
: #K S
N : Partitign
E ¢ number
E Prio‘rity selector E FIFO #1
) S— > [}
: N : { FIFO #2
. >
IP : : LR NN .
> T P
: / : LEIFO #K
P —>
ecccccc}edoceccccce e M

Queue lengths

Figure 2.46 Implementation of the parallel lookup scheme.

Result buffer

Result returning



2.4 IPV6 LOOKUP 67

a TCAM chip that is the least busy among the candidates (e.g., by comparing the first-in
first-out (FIFO) queue lengths of the TCAM chips).

During the TCAM access cycle, each of the K TCAM chips fetch an assigned IP
address from the FIFO queue, and performs a longest prefix match lookup independently.
At the output ports of the TCAM chips, an Ordering Logic reads out the lookup results
and returns them in their original sequence according to the time stamps attached to
them.

Performance. The lookup throughput can be significantly improved with chip level par-
allelism. The proposed scheme can achieve a peak lookup throughput of 533 million
packets per second (mpps) using four 133 MHz TCAM chips and having 25 percent
more TCAM entries than the original forwarding table [24]. This performance can read-
ily support a line rate of 160 Gbps. The disadvantage is that route update can be quite
complicated.

2.4 1PV6 LOOKUP

2.4.1 Characteristics of IPv6 Lookup

Internet Protocol Version 6 (IPv6) is one of the key supporting technologies of the next
generation network. According to the Internet Architecture Board (IAB), a unicast IPv6
address consists of two parts: a 64-bit network/sub-network ID followed by a 64-bit host
ID. To enable a smooth transition from IPv4 to IPv6, the IPv4-mapped address and IPv4-
compatible address formats were introduced. The former is defined by attaching the 32-bit
IPv4 address to a special 96-bit pattern of all zeros. The IPv4-mapped address starts with
80 bits of zeros and 16 bits of ones, followed by the 32-bit IPv4 address.

The TAB and IESG [25] recommend that, in general, an address block with a 48-bit
prefix be allocated to a subscriber. Very large subscribers could receive a 47-bit prefix or
slightly shorter prefix, or multiple 48-bit prefixes. A 64-bit prefix may be allocated when it
is known that one, and only one, subnet is needed; and a 128-bit prefix is allocated when it
is absolutely known that one, and only one, device is connecting to the network. It is also
recommended that mobile devices be allocated 64-bit prefixes.

From related recommendations in request for comments (RFC) and Réseaux IP
Européens (RIPE) documents, the following important characteristics can be obtained:
(1) It is obvious but important to note that there is no prefix with lengths between 64 bits
and 128 bits (excluding 64 bits and 128 bits); (2) The majority of the prefixes should be
the ‘/48s’ and ‘/64s’ the secondary majority. Other prefixes would be distinctly fewer than
the /48s’ and °/64s’; (3) Specifically, the number of ‘/128s’ should be tiny, which would
be similar to the ratio of the ‘/32s’ in the case of IPv4. Figure 2.47 shows the prefix length
distribution of an IPv6 routing table reported in [26]. In this routing table, there are a total
of 567 prefixes where only one prefix is longer than 64 bits.

2.4.2 A Folded Method for Saving TCAM Storage

Because of the high lookup rate and simplicity of table management, TCAM is currently
the most popular solution for address lookup and packet classification. Commercial TCAM



68 IP ADDRESS LOOKUP

1000
Telstra 26-4-2004

100
Ra
fis
L

S 10
o
)
Z

1

0.1

0 16 32 48 64 80 96 112 128

Prefix length

Figure 2.47 Prefix length distribution of an IPv6 routing table.

devices available today support configurable word-lengths of 36-, 72-, 144-, 288-, and
576-bits, and there are 72 input/output (I/O) pins for inputting the search key [27]. Double
datarate I/O is supported, so there will be no extra overhead in handling search keys that are
up to 144 bits in length. In a straightforward implementation of a route lookup engine using
TCAM, a word-length of 144-bits will be selected. However, as mentioned in Section 2.4.1,
the majority of IPv6 prefixes are no longer than 64 bits. Hence, over 50 percent of a TCAM
word will store the ‘don’t care’ value. Pao [28] has recently presented a simple but effective
approach to improve the space efficiency by over 40 percent.

In his approach [28], the TCAM is configured with 72-bit words. The route prefixes are
divided into two groups, Gs and G1. Gs contains all the prefixes with no more than 72 bits,
and Gy, contains all the prefixes with more than 72 bits. The TCAM blocks are divided into
two partitions, Pg and Py . Prefixes in Gy are stored in Pg. Prefixes in Gz are grouped by
the value of the first 72 bits. Routes a and b are put in the same subgroup if a and b share
a common 72-bit prefix M. Assume the number of subgroups of long prefixes is less than
64k. Each subgroup is assigned a distinct 16-bit tag 7. The common prefix M of a subgroup
is inserted into the partition Pg of the TCAM to serve as a marker. An entry in the routing
table is a six-tuple ( prefix, p, m, v, next-hop, T), where the flags p and m indicate whether
the entry is a prefix, a marker, or both. If the next-hop value is valid, then v = 1; otherwise,
v = 0. For a marker, the next-hop field records the next hop of the longest prefix in Gg that
matches M, if any. Let a be a prefix with / bits where [ >72. The bits are numbered from
1 to [ starting from the left. We define the suffix of a as the substring consisting of bits 73
to [. The first 72 bits of a will be stored in partition Pg, and the suffix (concatenated to the
tag T) is stored in partition Py,. The entries in the two partitions are ordered by their lengths.
An example of the two-level routing table organization is shown in Figure 2.48, where a
full-length address has 12 bits and a tag has 4 bits. A wildcard entry is inserted into Pg to
represent the default route, and a wildcard entry with v = 0 is inserted into Py, to serve as
a sentinel to simplify the handling of the boundary condition.

Address lookup is a two-step process. First, the most significant 72 bits of the destination
address A is extracted and the partition Py is searched. If the best matching entry found is
not a marker, then the packet is forwarded to the next-hop value returned by the address
lookup engine. If the best matching entry is a marker, then the 56-bit suffix of A is extracted
and concatenated with the 16-bit tag of the marker to form a key to search the partition



2.4 IPV6 LOOKUP 69

TCAM SRAM

R | [ Next T _i

P m Vv p ag
Prefix Nexthop | 001 10010 —] ™ | : op |

1| 1|t] 5 | 1001
001 10010 1101 || 7 | 101 10110 — BT o |
101 10110 01* 4 | P, 011 100% o |
001100 10% 5 | *(Default) — “g L 1|o|1]| 6 Null | |
011 100* 6 | = | 1joj1| 3 Null | |
| . e | | 1|of1] 1 Null ||
10110% 3 | . : : | > |
*(Default) 1 | L 5— | | : |
Sample routing table | 1001 1101 | : . |
(assuming 12-bit address) | P oll000r 1 | | 1 7 Null | |
| *(Dummy) —/ | | 1 1| 4 Null | |
| |y L] o] Nui| Nun |

Figure 2.48 Two-level routing table organization in TCAM.

Pp. If the search result is invalid, that is, v = 0, then the packet will be forwarded to the
next-hop value found in step 1; otherwise, the packet will be forwarded using the next-hop
found in step 2.

If there are more than 64k subgroups of long prefixes, one can further divide Py into two
or more partitions. In addition to the tag value, a partition ID is associated with the marker.
When a partition is searched, the other partitions are disabled. Hence, each partition can
support 64k subgroups of long prefixes, that is, a tag value only has local context within a
partition.

Performance. Let the total number of prefixes be N and the fraction of prefixes with no
more than 72 bits be S. Hence, the number of prefixes in group Gs is SN and the number
of prefixes in Gz is (1 — S)N. In the basic scheme, a 144-bit word is used to store a prefix
regardless of the actual length of the prefix. The total TCAM space used is 144N bits. For
the folded approach, let the average size of a subgroup of long prefixes in Gy, be 8. The
number of markers required is equal to (1 — S)N/B. The total TCAM space required is
T2(SN+ (1 —S)N/B) +72(1 — S)N = 72N (1 + (1 — S)/B) bits. Let R, be the ratio of
the space used by the folded scheme over the space used by the basic scheme. We have
Ry =1+ (1 —S8)/B)/2. Table 2.4 lists the values of R, for various combinations of S and
B. One can expect a space saving of more than 40 percent using the two-level routing table
organization.

2.4.3 IPv6 Lookup via Variable-Stride Path and Bitmap Compression

By considering the discrepancies among different parts of the prefix trie, and taking
advantage of the wide-word memory architecture, Zheng et al. [29] proposed a scalable
IPv6 route lookup scheme by combining the techniques of path compression and Lulea
bitmap compression. In addition, variable-stride was introduced to enhance the efficiency
of compression.

The viability and effectiveness of the combination of path and bitmap compression are
based on the facts that the prefix density of [Pv6 is much smaller than that of IPv4. Hence, the



70 IP ADDRESS LOOKUP

TABLE 2.4 Values of Rg for Different Combinations

of S and 8

B
S 1.0 1.5 2.0 2.5 3.0
0.6 0.7 0.63 0.6 0.58 0.57
0.7 0.65 0.6 0.575 0.56 0.55
0.8 0.6 0.57 0.55 0.54 0.53
0.9 0.55 0.53 0.525 0.52 0.52

IPv6 prefix trie should be more compressible (for both bitmap and path compression). The
efficiency of introducing variable-stride lies in the fact that the bitmap compression ratios
vary distinctly among different parts of the prefix trie. Thus, a fixed compression stride,
such as cuttings in depth 16 and 24 in Lulea (see Fig. 2.14), does not provide efficiency in
route table lookup, storage, and update costs due to the uneven distribution of prefixes.

Data Structure. A prefix trie is partitioned into sub-tries with variable heights, as shown
in Figure 2.49. A subtrie is defined to be a full binary trie that is carved out from a prefix
trie. It can be specified by a 2-tuple (root, SubTrieHeight), where root is the root node of
a subtrie, and SubTrieHeight specifies the height/stride of this subtrie. The nodes on the
bottom of the subtrie are called edge nodes and each subtrie should have 25u0TrieHeight oqoe
nodes.

Each trie node carries next hop IP address (NIP) or trie structure information. We use
a data structure called pointer array (PA) to hold the route information carried by the edge
node of a subtrie, with each pointer representing the memory location of either the NIP or
the next level subtrie structure, as shown in Figure 2.50.

Variable-stride bitmap, a
compressed subtrie data
structure, which can be packed

in fixed-size wide words

With path

\ compression

Subtrie
structure

Subtrie
structure

Prefix trie N

Figure 2.49 Demonstration of the subtrie hierarchy.



2.4 IPV6 LOOKUP 71

N\
’\ Root node —
Route | Next hop
A
' B NIP2
1
. e
| i Height=2 C NIP3
H L
Pl Route Table
A 4
4 Edge nodes
| & | N2 | NIP2 | NIP3 | Pointer array
[ + [ 1 | o [ 1 |  Bimap
N N T
Y A !
\ “ ’
R |
| &p | NIP2 | NIP3 | Compressed pointer
Figure 2.50 PA and corresponding compressed PA.
As depicted in Figure 2.50, Node A is the root of a two-layer subtrie, which consequently

contains four edge nodes and they are associated with a PA of four pointers, each of which
contains the memory location of either the NIP or the next subtrie structure. Node B carries

the route information with NIP2, which descends to the root of the

subtrie. Hence, two

successive pointers (for the second- and third-edge nodes) within in the PA contain the

same value (NIP2). In order to reduce the storage requirement, we

can only keep such

Figure 2.51 Data structure of a word frame.

5 Valid (1b) Sub trie height (4b) Skip (3b) l l
i
E‘f Segment (8b) ]
oo
Bitmap[1:8] > 5’
2 7
Bitmap[z Subtrieheight -7:2 SubTrieHeighL] i E}
s &
CP1[1:8] =} =
g o
o) CP1[9:16] c g
- a
>
T CP2[1:8] T T
jas Valid (1b) Sub trie height (4b) Skip (3b)
g
9] Segment (8b)
Bitmap[1:8]



72 IP ADDRESS LOOKUP

Route | Prefix Next hop ' Subtrie#1 A |
A * NIP1 I :
B 1* NIP2 . _I
C 1111* NIP3
D 11000* NIP3
E 11001* NIPI1
F 000001* | NIP4
G 0000000 | NIP2
H 0000001 NIP1

1 0000011 NIP1

Route table

Height=2, Skip=0
Bit-string =Node

/ Bitmap="1111"
Subtrict? &Subtrie#2

&NIP1
Height=2, Skip=3 AN \
it-string = ‘000’ Subtrie#3
Bit-string = ‘000 ZSubtici3 . '
Bitmap="‘1111" — Height=3, Skip=3
&NIP2 Bit-string =None
Subtrie#l - . s
&NIP1 Bitmap= ‘11100010
&NIP4 &NIP3
&NIP1 &NIP1
&NIP1(Failure CP) &NIP2
&NIP3
(b)

Figure 2.52 Example of variable-strike trie with path and bitmap compression trie. (a) Forwarding
table and corresponding binary trie; (b) Corresponding data structure of example in (a).

information in a compressed pointer array (CPA) through introducing a bitmap to indicate
which value can be omitted. As illustrated in the lower part of Figure 2.50, NIP2 appears
only once in the CPA, but twice in the PA. Bitmap stores the compressed information.
Such an idea/technique is called bitmap compression, which has been discussed in detail
in Section 2.2.2.

The subtries are packed in fixed-size wide words with compressed information, if any.
One wide word, called word frame, may contain one big subtrie when its compressing
potential is high; otherwise, several subtries are enclosed in one wide word. An example of
the word frame data structure is depicted in Figure 2.51.

Route Lookup. Figure 2.52a gives an example of a forwarding table and the correspond-
ing binary trie. Through path-compression, some internal nodes are omitted. The heights



2.5 COMPARISON 73

K’-bit
TCAM P &NIP
High To the subtrie
1g
priority K’-bit structure
BCAM ————» &Word-frame — — — — — — >
128-bit
NN
Y BCAM &NIP
CAM/TCAM Associated SRAM

Figure 2.53 CAM organization for lookup.

of the three subtries are 2, 2 and 3, respectively. Figure 2.52b illustrates the corresponding
data structure of the example. Note that the ‘skip’ value of subtrie #2 is 3 (>0), so the
corresponding word frame contains a failure CP.

The lookup process starts with the destination IP address as the search key and a com-
pressed pointer to the root of the prefix trie (as subtrie #1 in Fig. 2.52b). The lookup proceeds
by using the key and the pointer to find the successive word frames and get the correspond-
ing pointers iteratively. When the NIP containing the next IP address is encountered, the
lookup process terminates.

A delicate CAM lookup mechanism is also introduced based on the following two
observations: (1) the number of prefixes with the shortest length (say kji,) or with the
length that is slightly longer than k,,;, (say k') are tiny; (2) the number of 128-bit prefixes is
also very small. Therefore, (1) a k’-bit wide TCAM is used to store the prefixes no longer
than k’-bit; (2) a k’-bit wide BCAM (binary CAM) is used for the prefixes between k’-bit and
64-bit; and (3) a 128-bit wide BCAM is used to store the 128-bit prefixes. The architecture
is shown in Figure 2.53.

An incoming search key will be first sent to the mixed-CAM for a match. The matching
result with the highest priority is returned, along with the pointer to a word frame containing
either the associated next-hop IP address (for prefixes less than &’ bits or exactly 128 bits)
or the subtrie structure whose root node exactly matches the first kth bits of the key.

Performance. The experimental results show that for an IPv6 forwarding table containing
over 130k prefixes, generated by an IPv6 generator [29], the scheme can perform 22 million
lookups per second even in the worst case with only 440 kbytes of SRAM and no more than
3 kbytes of TCAM. This means that it can support 10 Gbps route lookup for back-to-back
60-byte packets using on-chip memories.

2.5 COMPARISON
Table 2.5 summarizes several IP route lookup schemes with the asymptotic complexity for

worst case lookup, storage, and update [1]. They are categorized into five classes, Class
I-V, based on data structure and lookup mechanism. Class I includes the basic 1-bit trie and



74 IP ADDRESS LOOKUP

TABLE 2.5 Complexity Comparison of Different Route Lookup Schemes

Case Scheme Worst-case Lookup Storage Update

I 1-bit trie oWw) O(NW) oWw)
PC-trie oWw) O(N) oWw)

I k-bit trie OW /k) OQFNW k) O(W /k + 2%)
LC-trie O(W /k) OQFNW k) O(W /k + 2%)

Lulea oW /k) ORKNW k) O(W [k + 2K)

I Binary search on prefix lengths O(log, W) O(Nlogy, W)  O(logy, W)

v k-way range search O(log; N) O(N) O(N)

A% TCAM o(l) O(N) —

the path-compressed trie structures. The latter improves the average lookup performance
and storage complexity. But its worst-case lookup performance is still O(W), because there
may be some paths from the root to the leaves that are W bits long. The path-compressed
trie has the property of keeping the total number of nodes, both leaf nodes and internal
nodes, below 2N, resulting in the storage complexity of O(N).

The schemes in Class II are based on the multi-bit trie, which is a very powerful and
generalized structure. Besides the four schemes listed in Table 2.5, the DIR-24-8-BASIC
and BC-16-16 also belong to this class. The worst case lookup is in O(W /k) because a
chunk of k bits of the destination address is inspected at a time, as opposed to one bit at a
time in Class I. The Lulea algorithm has the same order of storage complexity as the others,
but with a smaller constant factor, making it attractive in implementation.

The schemes in Classes I and II perform the lookup by linearly traversing the trie levels
from top to bottom. The algorithm in Class III deploys a binary search over trie levels and
performs hash operations at each level. Although the algorithm in Class III seems to have a
small lookup complexity, it is based on the assumption of perfect hashing (no hash collision
and thus one hash operation at each level). In reality, the time complexities of searches and
updates over the hash tables are non-deterministic and can be quite large.

The algorithm in Class IV solves the IP lookup problem by treating each prefix as a
range of the address space. The ranges split the entire address space into multiple intervals,
each of which is associated with a unique prefix. Then a two-way (binary) or k-way search
is deployed to determine which interval the prefix belongs to. Its lookup performance is
O(log; N) in the worst case.

TCAM is specialized hardware that completes the lookup in a constant time by simul-
taneously comparing the IP address with all prefixes in the table. We left ‘—’ in the update
complexity column due to its dependence on the data management schemes used for the
TCAM.

Making a choice among these IP lookup schemes depends on the speed and storage
requirements. For instance, in a low-end or a medium router, packet processing and for-
warding are usually handled by general purpose processors. The trie-based schemes, such as
LC-trie, Lulea algorithm, and binary search on trie levels are good candidates in these condi-
tions. Typically, low-end or medium routers perform packet processing and forwarding with
generic processors allowing for the algorithms to be easily implemented in software. How-
ever, for a core/backbone router, where the link speed is high and the forwarding table is
large, the lookup time becomes more stringent. Assuming 40-byte packets are back-to-back



REFERENCES 75

at a 10 Gbps (OC-192) link, the lookup time is only 32 ns. In this case, the hardware-based
algorithms, such as DIR-24-8-BASIC, BC-16-16, and TCAM, become more feasible.

REFERENCES

[1] M. Sanchez, E. W. Biersack, and W. Dabbous, “Survey and taxonomy of IP address lookup
algorithms,” IEEE Network, vol. 15, no. 2, pp. 8-23 (Mar. 2001).

[2] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (CIDR): an address
assignment and aggregation strategy,” RFC 1519 (Proposed Standard), Sept. 1993. [Online].
Available at: http://www.ietf.org/rfc/rfc1519.txt

[3] Y.Rekhter and T. Li, “An architecture for IP address allocation with CIDR,” RFC 1518 (Proposed
Standard), Sept. 1993. [Online]. Available at: http://www.ietf.org/rfc/rfc1518.txt

[4] P. Gupta, “Routing lookups and packet classifications: theory and practice,” in Proc. HOT
Interconnects 8, Stanford, California (Aug. 2000).

[5] D. Knuth, Fundamental Algorithms Vol. 3: Sorting and Searching. Addison-Wesley,
Massachusetts, 1973.

[6] W. Eatherton, “Hardware-based internet protocol prefix lookups,” M. S. Thesis, Washington
University, St. Louis, Missouri (May 1999).

[7] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled prefix expansion,” in Proc.
ACM SIGMATICS, Madison, Wisconsin, pp. 1-10 (June 1998).

[8] D.R.Morrison, “PATRICIA - Practical algorithm to retrieve information coded in alfanumeric,”
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 1093-1102 (Oct. 1968).

[9] S. Nilsson and G. Karlsson, “IP-Address lookup using LC-tries,” IEEE Journal on Selected
Areas in Communications, vol. 17, pp. 1083—-1092 (June 1999).

[10] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for fast routing
lookups,” in Proc. ACM SIGCOMM, Cannes, France, pp. 3—14 (Sept. 1997).

[11] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: hardware/software IP lookups with
incremental updates,” ACM SIGCOMM Computer Communications Review, vol. 34, no. 2,
pp. 97-122 (Apr. 2004).

[12] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based router search engine
architecture with single port memories,” ACM SIGARCH Computer Architecture News, vol. 33,
pp. 123-133 (May 2005).

[13] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high-speed IP routing lookups,”
in Proc. ACM SIGCOMM, Cannes, France, pp. 25-36 (Sept. 1997).

[14] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using multiway and multicolumn
search,” in Proc. IEEE INFOCOM’98 San Francisco, California, vol. 3, pp. 1248-1256
(Apr. 1998).

[15] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access speeds,”
in Proc. IEEE INFOCOM’98, San Francisco, California, vol. 3, pp. 1240-1247 (Apr. 1998).

[16] N. Huang, S. Zhao, J. Pan, and C. Su, “A fast IP routing lookup scheme for gigabit switching
routers,” in Proc. IEEE INFOCOM’99, New York, pp. 1429-1436 (Mar. 1999).

[17] IDT75P52100 Network Search Engine, IDT, June 2003. [Online]. Available at: http://
www.idt.com

[18] CYNSEI10512 Network Search Engine, CYPRESS, Nov. 2002. [Online]. Available at: http://
WWW.Cypress.com

[19] Ultra9M - Datasheet from SiberCore Technologies. [Online]. Available at: http://www.
sibercore.com



76 IP ADDRESS LOOKUP

[20] P. Gupta, “Algorithmic search solutions: features and benefits,” in Proc. NPC-West 2003,
San Jose, California (Oct. 2003).

[21] H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro, vol. 22, no. 1, pp. 58-64
(Jan. 2002).

[22] F. Zane, G. Narlikar, and A. Basu, “Cool CAMs: power-efficient TCAMs for forwarding
engines,” in Proc. IEEE INFOCOM’03, San Francisco, California, pp. 42-52 (Apr. 2003).

[23] K. Zheng, C. C. Hu, H. B. Lu, and B. Liu, “An ultra high throughput and power efficient TCAM-
based IP lookup engine,” in Proc. IEEE INFOCOM’04, Hong Kong, vol. 3, pp. 1984-1994
(Mar. 2004).

[24] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2nd ed.,
Morgan-Kaufmann, San Francisco, California, 1995.

[25] X. Zhang, B. Liu, W. Li, Y. Xi, D. Bermingham, and X. Wang, “IPv6-oriented 4 OC-768
packet classification with deriving-merging partition and field-variable encoding algorithm,” in
Proc. IEEE INFOCOM’06, Barcelona, Spain (Apr. 2006).

[26] “Route-view v6 database.” [Online]. Available at: http://archive.routeviews.org/routeviews6,/
bgpdata/

[27] Netlogic Microsystems. [Online]. Available at: http://www.netlogicmicro.com

[28] D. Pao, “TCAM organization for IPv6 address lookup,” in Proc. IEEE Int. Conf. on Advanced
Communications Technology, Phoenix Park, South Korea, vol. 1, pp. 26-31 (Feb. 2005).

[29] K. Zheng, Z. Liu, and B. Liu, “A scalable IPv6 route lookup scheme via dynamic variable-
stride bitmap compression and path compression,” Computer Communication, vol. 29, no. 16,
pp- 3037-3050 (Oct. 2006).



