
Book1099 — “c12” — 2007/2/15 — 9:28 — page 382 — #1

CHAPTER 12

CLOS-NETWORK SWITCHES

In this chapter we consider an approach to building modular switches. The architecture is
based on the Clos network (see Figure 12.1). Switch modules are arranged in three stages,
and every module is interconnected with every other module in the adjacent stage via a
unique link. Here, the three stages are referred to as the input stage, middle stage, and
output stage. The modules in those stages are accordingly called input modules (IMs),
central modules (CMs), and output modules (OMs). Each module is assumed to be non-
blocking and could be, for example, the crossbar switches. Inputs are partitioned into groups
of the same size, and the inputs in the same group are connected to an input module. Let n
be the number of inputs per group, and k the number of input modules. The total number
of inputs is given by N = n × k. On the other hand, a mirror structure can be found on
the output side. In the middle, there are m k × k central modules, as each link on a central
module is dedicated to either an IM or OM.

One could argue for only considering the two-stage interconnection network, in which
every pair of modules of adjacent stages are interconnected with a dedicated link. In this
case, only one cell can be transmitted between any pair of modules because there is just one
path between them, causing a very high blocking probability. In a Clos network, however,
two cells from an input module can take distinct paths via different central modules to get
to the same output module. The central modules in the middle stage can be viewed as the
routing resources shared by all input and output modules. One can expect that this will give
a better tradeoff between the switch performance and complexity.

Because of this property, the Clos network was widely adopted in the traditional circuit-
switched telephone network where a path is reserved in the network for each call. If a Clos
network has enough central modules, a path can always be found for any call between an
idle input and an idle output. Such a property is called nonblocking. Basically, there are two
senses of nonblocking, strictly and rearrangeably. In a strictly nonblocking Clos network,

High Performance Switches and Routers, by H. Jonathan Chao and Bin Liu
Copyright © 2007 John Wiley & Sons, Inc.

382

Book1099 — “c12” — 2007/2/15 — 9:28 — page 383 — #2

12.1 ROUTING PROPERTY OF CLOS NETWORK SWITCHES 383

Figure 12.1 A Clos-network switch.

every newly arriving call will find a path across the network without affecting the existing
calls. With rearrangeably nonblocking, we may have to arrange paths for some existing
calls in order to accommodate a new arrival.

This chapter will now focus on how the Clos network is used in packet switching. The
rest of the chapter is organized as follows: first, we describe the basic routing properties
in a Clos network and formulate the routing as a scheduling problem. Second, we dis-
cuss several scheduling schemes for the Clos network switch and classify them into three
categories. First category is sequential optimal matching, which gives the maximum input–
output matching at every timeslot at the cost of high complexity. In this category we also
discuss two algorithms: The looping algorithm and m-matching algorithm [1]. The second
category is semi-parallel matching, which provides the balance between performance and
complexity, and we illustrate one algorithm, namely, the Euler partition algorithm [2]. The
third category is parallel heuristic matching, which may not give the best matching but
enjoys low complexity. We describe six algorithms: Karol’s algorithm [3], the frame-base
matching algorithm for the Clos network (f-MAC) [4], the concurrent matching algorithm
for the Clos network (c-MAC) [4], the dual-level matching algorithm for the Clos network
(d-MAC) [4], the random dispatching algorithm (Atlanta switch) [3], and the concurrent
round-robin dispatching (CRRD) algorithm [3, 5].

12.1 ROUTING PROPERTY OF CLOS NETWORK SWITCHES

For the N × N switch shown in Figure 12.1, both the inputs and the outputs are divided
into k modules with n lines each. The dimensions of the input and output modules are
n × m and m × n, respectively, and there are m middle-stage modules, each of size k × k.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 384 — #3

384 CLOS-NETWORK SWITCHES

Figure 12.2 Two possible routing paths from input i to input j in the Clos network.

As illustrated in Figure 12.2, the routing constraints of the Clos network are briefly stated
as follows:

1. Any central module can only be assigned to one input of each input module, and one
output of each output module.

2. Input i and output j can be connected through any central module.

3. The number of alternate paths between input i and output j is equal to the number of
central modules.

The routing problem is how to direct the input cells to the respective output modules
without path conflicts. For every time slot, the traffic between input modules and output
modules can be written as

T =




t1,1 t1,2 · · · t1,k
t2,1 t2,2 · · · t2,k
· · · · · · · · · · · ·
tk,1 tk,2 · · · tk,k




where ti,j represents the number of cells arriving at the ith input module destined for the
jth output module. The row sum is the total number of cells arriving at each input module,
while the column sum is the number of cells destined for the output module, and they are
denoted as

Ri =
k∑

j=1

ti,j ≤ n ≤ m, i = 1, 2, . . . , k, (12.1)

Sj =
k∑

i=1

ti,j ≤ n, j = 1, 2, . . . , k. (12.2)

Book1099 — “c12” — 2007/2/15 — 9:28 — page 385 — #4

12.1 ROUTING PROPERTY OF CLOS NETWORK SWITCHES 385

Figure 12.3 Bipartite graph representation of the Clos network routing problem.

The routing problem in the Clos network can be formulated as an edge coloring problem
in a bipartite graph. With reference to Figure 12.3, a Clos network switch with six center
modules and a given connection matrix can be transformed into a bipartite graph represen-
tation, where the numbers of lines connecting an input module and an output module is the
number of requesting connections.

With the bipartite graph shown in Figure 12.3, the routing problem in the Clos network
is transformed into an edge coloring problem in the graph. The aim is to use the minimum
number of colors to color those lines in the bipartite graph such that there are no two colored
lines the same for each module. Figure 12.4 is the solution of the edge coloring problem for
the bipartite graph shown in Figure 12.3. Note that the lines with the same color indicate
the routing in the Clos network via the same center module.

Figure 12.4 Edge coloring approach for the Clos network routing. Different edge colors are
represented by different edge patterns.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 386 — #5

386 CLOS-NETWORK SWITCHES

Another way to solve the routing problem in the Clos network is matrix decomposition.
This mathematical expression is to decompose the connection matrix into the summation
of several sub-matrices

T =




t1,1 t1,2 · · · t1,k
t2,1 t2,2 · · · t2,k
· · · · · · · · · · · ·
tk,1 tk,2 · · · tk,k




=




a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k
· · · · · · · · · · · ·
ak,1 ak,2 · · · ak,k


+




b1,1 b1,2 · · · b1,k
b2,1 b2,2 · · · b2,k
· · · · · · · · · · · ·
bk,1 bk,2 · · · bk,k


+ · · ·

And each of the sub-matrices must have the following property:

k∑
j=1

ai,j ≤ 1,
k∑

j=1

bi,j ≤ 1, i = 1, 2, . . . , k. (12.3)

and

k∑
i=1

ai,j ≤ 1,
k∑

i=1

bi,j ≤ 1, j = 1, 2, . . . , k. (12.4)

Figure 12.5 illustrates the matrix decomposition approach in solving the routing problem
in the Clos network for the same example given earlier in Figure 12.3.

In summary, the routing problem in Clos network can be interpreted as three equivalent
questions:

1. How to assign central routes in a Clos network with m central modules in order to
accommodate a set of connection requests?

Figure 12.5 Matrix decomposition approach for Clos network routing.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 387 — #6

12.2 LOOPING ALGORITHM 387

2. How to edge-color a given bipartite graph with maximum degree m?

3. How to decompose a matrix with row/column sum ≤ m into m matrices with
row/column sum ≤ 1?

In the following, we will discuss several well-known scheduling schemes for the Clos net-
work in detail. They can be divided into three categories: (1) Sequential optimal matching;
(2) Semi-parallel matching; (3) Parallel heuristic matching.

12.2 LOOPING ALGORITHM

Looping algorithm is a simple sequential optimal matching algorithm for the Clos network.
The advantage of this algorithm is its simplicity and low complexity O(N). Its disadvantage
is that it only works for the m = 2 Clos network. In other words, the looping algorithm is
only suitable for the Clos network with two center modules and input/output modules with
a size of 2 × 2.

For a given input traffic matrix, the looping algorithm works as follows:

Step 1. Start the looping algorithm from any arbitrary input port.

Step 2. Find the desired output module that contains the destined output port via one of
the center modules.

Step 3. Loop back from the same output module in step 2, but with the alternative output
port, and trace to the corresponding input port via the alternative center module from
step 2.

Step 4. Loop back from the same input module found in step 3, but with the alternative
input port. Continue with steps 2–4.

Step 5. If a close loop or an idle input/output is found, restart the looping algorithm
from step 1.

An example to better illustrate the looping algorithm is as follows. Assume a Clos net-
work switch with a total size of 8 × 8, consisting of four input modules and four output
modules, each of which has a size of 2 × 2, and two center modules, each of which has a
size of 4 × 4. For a given set of input/output connection requests, the looping algorithm

Figure 12.6 Looping algorithm in a 8 × 8 Clos network.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 388 — #7

388 CLOS-NETWORK SWITCHES

gives two sets of matching in Figure 12.6, one of them is maximum matching, while the
other is not necessary.

We can trace a few steps of this example. Let us start with input 0: it desires output 3
and reaches output 3 via center module 0. Next we loop back from output 2 to input 3 via
center module 1. Then input 2 takes its turn and finds output 5 via center module 0. Finally,
we loop back from output 4 to input 1 via center module 1. Now we have a closed loop. The
looping algorithm may restart with any of the remaining unassigned input ports. Eventually,
we will complete all possible matches between the inputs and outputs.

Notice that, in the looping algorithm, each input–output pair takes turns to assign routes
via the center module. Therefore, the total complexity of this algorithm is O(N).

12.3 m-MATCHING ALGORITHM

The m-matching is another sequential optimal matching algorithm for the Clos network.
The m-matching algorithm uses the bipartite graph as an approach to find perfect matching
(only if the bipartite graph is regular). Thus, it does not have the switch size constraint.

As mentioned in the earlier section, the edge coloring problem tries to use the minimum
amount of colors to color the bipartite graph such that there are no two identical colors from
the same edge. The m-matching algorithm solves this edge coloring problem by assigning
one color at a time. It assigns one color to the matching and removes the corresponding
edges from the bipartite graph. Then it continues this process till all the edges are colored.
Each color may take O(N) steps to find a perfect matching from the bipartite graph. Thus
with m different colors, the m-matching algorithm has a time complexity of O(mN).

The drawback of this matching algorithm is that it is incapable of handling irregular
bipartite graphs. An irregular bipartite graph is the one that does not have an equal number
of degrees from each node. In other words, each input module of the Clos network does not
have an equal number of requests. In the case of the irregular bipartite graph, one may use
maximum-size matching to transform an irregular bipartite graph into a regular one at the
cost of increased complexity of O(N2.5).

12.4 EULER PARTITION ALGORITHM

Both the looping algorithm and m-matching algorithm can give perfect matching for the
Clos network. In other words, they always provide the best possible matching between input
and output for a given traffic matrix. However, the former has a switch size constraint and
the latter suffers high computation complexity. Next, we discuss a semi-parallel matching
algorithm for the Clos network.

Similar to the m-matching algorithm, the Euler partition algorithm uses the edge coloring
bipartite graph approach to resolve the routing problem in the Clos network. However, the
Euler partition algorithm uses looping to partition the bipartite graph to achieve a fast
edge coloring process. First, an example of the Euler partition algorithm. Refering to
the bipartite graph in Figure 12.3, the Euler partition algorithm first uses two colors to
divide the bipartite graph into two (Fig. 12.7). With reference to Figure 12.8, after Euler
partition, one bipartite graph can be divided into two for further assignment. Note that the
two partitioned bipartite graphs are independent of each other; thus the second iteration of
the Euler partition algorithm can be done in a parallel manner. One thing to notice is that

Book1099 — “c12” — 2007/2/15 — 9:28 — page 389 — #8

12.5 KAROL’s ALGORITHM 389

Figure 12.7 Euler partition algorithm, step 1.

Figure 12.8 Euler partition algorithm, step 2.

the Euler partition algorithm is only efficient for an even degree bipartite graph. In the case
of odd degree edges appearing in the bipartite graph, perfect matching to reduce the degree
by 1 is used.

In summary, the Euler partition algorithm is a multi-iteration looping algorithm. Each
iteration of the Euler partition algorithm consists of (1) in the case of an even degree bipartite
graph, performing a Euler split to partition the graph into two; (2) in the case of an odd
degree bipartite graph, performing perfect matching to reduce the degree by 1 and then
performing Euler partition. As a result, the total complexity of the Euler partition algorithm
is O(N log(m)).

The Euler partition algorithm achieves the balance between performance and complexity.
However, the Euler partition algorithm’s complexity linearly increases with the switch size
N . With an increase of link speed and switch size, it is neither scalable nor practical in today’s
high-speed networks. From here on, we will discuss six parallel heuristic algorithms for the
Clos network. They might not achieve the perfect matching from timeslot to timeslot but
they are ultrascalable and practical to implement in modern high-speed switches.

12.5 KAROL’S ALGORITHM

Karol’s matching algorithm can assign central routes for cells in a heuristic manner and yet
still achieve a good assignment result. Referring to Figure 12.1, let i be the index of input
modules (IMs) where i ∈ 0, 1, 2, 3, . . . , k − 1. Let j be the index of output modules (OMs)
where j ∈ 0, 1, 2, 3, . . . , k − 1 (k is the number of center modules in the Clos network). In
Karol’s matching algorithm, each timeslot is divided into k mini-slots. For 0 ≤ t ≤ k − 1, in
mini-slot t, IM i communicate only with OM j where j = [(t + i) modulo k]. The purpose of
this mini-slot matching is to attempt to find central-module routes for those cells from IM i to
OM j. After k mini-slots, each IM–OM pair is matched up once and the entire central-module
assignment is done in a distributed manner. Because of the unique switch architecture of the
Clos-network switch, within each mini-slot central-module routes are independent among

Book1099 — “c12” — 2007/2/15 — 9:28 — page 390 — #9

390 CLOS-NETWORK SWITCHES

Figure 12.9 Karol’s matching algorithm in 3-stage Clos networks.

all IM–OM pairs, which enables each IM–OM pair to assign central-module routes freely
without causing internal blocking. In order to achieve fairness among all traffic loads, the
matching sequence of Karol’s matching algorithm can be modified and done in a round robin
fashion in such a way that for each set of traffic requests, the order of modules matching
can be shifted among all matching pairs. For example, suppose that in the current timeslot,
IM i starts its mini-slot matching procedure from OM j. Then in the next timeslot, it may
start from OM [(j + 1) modulo k], and so on and so forth. As a result, the complexity of
Karol’s algorithm is only O(k).

An example of Karol’s matching algorithm in the Clos network is given as follows.
Let us consider a 9 × 9 Clos network switch, which has three IMs, three CMs, and
three OMs. Therefore, it takes three mini-slots for all IMs to finish performing Karol’s
matching with all OMs. Figure 12.9 shows Karol’s matching algorithm for these three
mini-slots.

Further more, Karol’s algorithm uses a vector for each input module and each output
module to record the availability of the central modules. With reference to Figure 12.10,
those vectors are matched up in pairs, each of which has one vector for an input module (e.g.,
Ai) and the other for an output module (e.g., Bj). Each IM/OM vector is composed of m bits,
and each bit corresponds to a CM. A “0” means that the link to the CM is available and “1”
represents unavailable. For those pairs of modules that have a cell to dispatch between them,
the two vectors will be compared to locate a “0,” that is, an available link to a CM, if any.

Figure 12.10 Vector representation of center route availability in Karol’s algorithm. Ai is a m-bit
vector of IMi; each bit indicates the availability of the link to the CM. Bi is also a m-bit vector of
OMj; each bit indicates the availability of the link from the CM.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 391 — #10

12.6 FRAME-BASED MATCHING ALGORITHM FOR CLOS NETWORK 391

In the next three sections, a new class of matching algorithms, called MAC, for resolving
scheduling problems in 3-stage Clos-network switches are presented. To relax the strict
arbitration time constraint, MAC operates based on a frame of r cells (r > 1).

12.6 FRAME-BASED MATCHING ALGORITHM FOR CLOS NETWORK
(f-MAC)

Figure 12.11 shows the structure of a MAC packet switch, which consists of a packet
scheduler (PS) and a 3-stage Clos-network switch fabric. The PS consists of k scheduling
input modules (SIMs) and k scheduling output modules (SOMs), each of which corresponds
to an input switch module (or output switch module) in the 3-stage Clos-network switch. A
crosspoint switch with a reconfigured pattern is used to interconnect these SIMs and SOMs.

All incoming packets are first terminated at ingress line cards (ILCs), where they are
segmented into cells (fixed length data units) and stored in a memory. The packet head-
ers are extracted for IP address lookup, classification, and other functions such as traffic
shaping/policing. Packets destined for the same output port are stored in the same virtual
output queues (VOQs) in the ILCs. Multiple cells (e.g., r cells) in the same VOQ form a
frame that is sent to an output port once a grant signal is given by the PS. Let us define a
cell time slot to be T , and the frame period F = r × T , where r is the frame size in number
of cells. The ILCs send cell-arrival information to the PS. The PS then resolves contention,
finds routing paths in the center stage, and sends grant signals to the ILCs in each extended
frame period F. A large buffer with a re-assembly queue (RAQ) structure is used in the
egress line card (ELC) to store the frames from the switch fabric and to re-assemble them
into packets.

The first MAC algorithm to be discussed is the frame-based matching algorithm for
Clos-network switch (f-MAC). The f-MAC includes two phases to solve the switching
problems. It first resolves the contention of the frames from different input ports that are

Figure 12.11 Structure of a 3-stage Clos-network switch and a packet scheduler.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 392 — #11

392 CLOS-NETWORK SWITCHES

destined for the same output port. It then determines a routing path through the center
stage (i.e., chooses a CM) for each matched input–output pair. Since there can be multiple
possible paths (determined by the number of CMs) for each matched I/O, choosing a CM to
reduce internal blocking and thus increase the throughput further complicates the scheduling
algorithm design.

In the first phase, f-MAC is an extension of the exhaustive dual round-robin matching
(EDRRM) scheme [6], by including the frame concept. Most iterative matching schemes,
such as iSLIP [7] and DRRM [3], suffer from the problem of throughput degradation under
unbalanced traffic distribution. The EDRRM scheme improves throughput by maintaining
the existing matched pairs between the inputs and outputs so that the number of unmatched
inputs and outputs is drastically reduced (especially at high load), thus reducing the ineffi-
ciency caused by not being able to find matches among those unmatched inputs and outputs.
The f-MAC also modifies EDRRM slightly to further improve the throughput. One of the
major problems of the exhaustive matching is that it may cause starvation in some inputs.
One way to overcome this problem is to set a timer for each head-of-line (HOL) frame.
When the timer expires, the request from the “expired” frame is given the highest preference.

In phase 1, f-MAC finds I/O matching and consists of three steps:

Step 1: Request. Each unmatched input sends a request to every output port arbiter for
which it has a queued cell in the correspondingVOQ. The request is set at high priority
if the queue length is above (or equal to) the threshold r; otherwise, the request is set
at low priority. Each matched input only sends a high-priority request to its matched
output.

Step 2: Grant. If each output port arbiter receives one or more high-priority requests, it
chooses the first request to grant starting from the current position of the high-priority
pointer. Otherwise, it grants the first low-priority request starting from the current
position of the low-priority pointer.

Step 3: Accept. If each input port arbiter receives one or more high-priority grants,
it accepts the first starting from the current position of the high-priority pointer.
Otherwise, it accepts the first starting from the current position of the low-priority
pointer.

The pointers of the input port arbiter and output port arbiter are updated to the next
position only if the grant is accepted in step 3.

After input–output matching is completed in phase 1, f-MAC finds a routing path in
phase 2 for each matched input–output pair through the 3-stage bufferless Clos-network
switch. To reduce computation complexity, a simple parallel matching scheme [9] is
adopted. That is, f-MAC includes k matching cycles. In each matching cycle, each SIM is
matched with one of the k SOMs and the parallel matching scheme described in Section 12.5
is adopted to find the vertical pairs of zeros between Ai and Bj.

12.7 CONCURRENT MATCHING ALGORITHM FOR CLOS NETWORK
(c-MAC)

With the increase of switch sizes and port speeds, the hardware and interconnection com-
plexity between input and output arbiters makes it very difficult to design the packet
scheduler in a centralized way. This section presents a more scalable concurrent matching

Book1099 — “c12” — 2007/2/15 — 9:28 — page 393 — #12

12.7 CONCURRENT MATCHING ALGORITHM FOR CLOS NETWORK 393

algorithm for Clos-network switches, called c-MAC. It is highly distributed such that the
input–output matching and routing-path finding are concurrently performed by scheduling
modules.

Figure 12.12 shows the architecture of the packet scheduler. It consists of k SIMs and k
SOMs, each of which corresponds to an input switch module (or output switch module) in
the 3-stage Clos-network switch (see Fig. 12.11). There are n IPAs in each SIM. Each SIM
consists of n virtual output port arbiters (VOPAs), each of which corresponds to an output
port in the corresponding OM. Each SIM has an input module arbiter (IMA), and each SOM
has an output module arbiter (OMA).A crosspoint switch with a predetermined reconfigured
pattern is used to interconnect these SIMs and SOMs. As shown in Figure 12.11, each ILC
has N VOQs, each corresponding to an ELC. A counter C(i, j) in the PS is used to record
the number of cells in the corresponding VOQ(i, j).

The c-MAC scheme divides one frame period f into k matching cycles as shown in
Figure 12.13. In each matching cycle, each SIM is matched with one of the k SOMs. During
each cycle, c-MAC includes two phases to find the input–output matches and routing paths,
respectively.

At the beginning of each matching cycle, each SOM passes m + 2n bits to the corre-
sponding SIM, where the m bits correspond to the state of m input links of the corresponding
OM; the 2n bits correspond to the state of n output ports of the corresponding OM. There
are four possible states for each output port: “00” when the output port is unmatched; “01”
when the output port is matched with low priority in the last frame period; “10” when the
output port is matched with high priority in the last frame period; “11” when the output
port is matched in this frame period.

Figure 12.12 Schematic of the packet scheduler.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 394 — #13

394 CLOS-NETWORK SWITCHES

Figure 12.13 Timing schematic of the c-MAC scheme.

It is assumed that the matching sequence between SIMs and SOMs is predetermined. For
instance, in the first cycle, SIMi is matched with SOMj, where 1 ≤ i ≤ k and 1 ≤ j ≤ k. In
the second cycle, SIMi is matched with SOM(j mod k)+1. The procedure is repeated k times.
To achieve matching uniformity for all the SIMs, the beginning matching sequence between
SIMs and SOMs is skewed one position at the beginning of each frame period.

Phase 1 finds I/O matching and consists of three steps as described below:

Step 1: Request. Each matched input port arbiter (IPA) only sends a high-priority request
to its matched VOPA; each unmatched IPA (including the currently matched IPA but
whose matched VOQ’s queue length is less than a threshold r) sends a 2-bit request
to every VOPA for which it has queued cells in the corresponding VOQ. (“00” means
no request; “01” means low-priority request because queue length is less than r; “10”
means high-priority request because queue length is larger than r; “11” means the
highest priority because the waiting time of the HOL frame is larger than a threshold,
Tw.) Note that, using the waiting time mechanism for the HOL frames prevents the
starvation problem.

Step 2: Grant. Only the “available” VOPA performs the grant operation. A VOPA is
defined to be “available,” if its corresponding output port is

(a) Unmatched; or

(b) Matched in the last frame period with low priority (the VOPA receives at least
one high-priority request at this frame period); or

(c) VOPA is matched in the last frame period with high priority, but it receives the
request from the matched IPA and its priority is becoming low-priority in this
frame period.

If a VOPA is “available” and receives one or more high-priority requests, it grants the
one that appears next in a fixed round-robin schedule starting from the current position
of the high-priority pointer. If there are no high-priority requests, the output port
arbiter grants one low-priority request in a fixed round-robin schedule starting from
the current position of the low-priority pointer. The VOPA notifies each requesting
IPA whether or not its request is granted.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 395 — #14

12.8 DUAL-LEVEL MATCHING ALGORITHM FOR CLOS NETWORK 395

Step 3: Accept. If the IPA receives one or more high-priority grants, it accepts the one
that appears next in a fixed round-robin schedule starting from the current position
of the high-priority pointer. If there are no high-priority grants, the input port arbiter
accepts one low-priority request in a fixed round-robin schedule starting from the
current position of the low-priority pointer. The input port arbiter notifies each VOPA
whether or not its grant is accepted. Update of the pointers: The pointer of IPA and
VOPA is updated to the chosen position only if the grant is accepted in Step 3 of
phase 1 and also accepted in phase 2.

In phase 2, c-MAC adopts the parallel matching scheme [9] to find the routing paths for
the matched I/O pairs as described in previous section.

12.8 DUAL-LEVEL MATCHING ALGORITHM FOR CLOS NETWORK
(d-MAC)

In c-MAC, each pair of SIM–SOM needs to be matched once, regardless of the queuing
status of the switch, yielding k matching cycles for the arbitration in one frame period. This,
however, results in a high time complexity that prevents the selection of a small frame size.
To further reduce the scheduling time complexity and relax the arbitration time constraint,
we have proposed a new dual-level matching algorithm for the Clos-network switch, call
d-MAC, to determine the matching sequence between the SIMs and SOMs according to the
queuing information of the switch.

The d-MAC scheme consists of two levels of matching, that is, module-level match-
ing and port-level matching. The former is responsible for determining the SIM–SOM
matching pattern according to the queuing status of the switch. The latter is responsible for
determining the port-to-port matching and finding the internal routing path for the matched
input–output pair, as the task of matching cycle in c-MAC.

For the module-level matching, the switching patterns of a number of, say F, frames can
be determined simultaneously. These F frames constitute a super-frame. We use the example
shown in Figure 12.14 to illustrate the module-level matching steps of d-MAC as follows.
With reference to Figure 12.14a, a traffic matrix is used to represent the queuing status of the
switch, in which entry (i, j) denotes the number of buffered cells that desire to be transmitted
from IMi to OMj. According to this traffic matrix, a request matrix can be obtained. Note
that the request matrix gives the number of requests that can be sent from each SIM to
each SOM. Then a scheduling algorithm can be employed to do arbitration among these
requests, and this process produces a super-frame matrix, in which each entry represents
the matching opportunities between each SIM and each SOM in one super-frame. With
reference to Figure 12.14b, the super-frame matrix is further decomposed into the module-
level matching matrices, where a module-level matching matrix represents the matching
pattern of SIMs and SOMs in one matching cycle as shown in Figure 12.14c. The module-
level matching is done after the module-level matching matrices are determined. With each
of these matrices, the port-level matching can thereafter perform the task of matching cycle,
that is, port-to-port matching and route assignment, for the given SIM–SOM pairs.

The module-level matching and port-level matching assignment can be performed in
a pipelined manner as shown in Figure 12.15. As described above, each super-frame is
composed of F frames, and each frame consists of r cells. Suppose that the number of
matching cycles in each frame is set to be k′, where k′ ≤ k, the transmission time of r

Book1099 — “c12” — 2007/2/15 — 9:28 — page 396 — #15

396 CLOS-NETWORK SWITCHES

Figure 12.14 Illustration of module-level matching of d-MAC (k = 4, k′ = 2, F = 3).

cells must be greater than or equal to the arbitration time of k′ matching cycles. This is
the constraint against selecting a small r. In each super-frame, there are a total of F × k′
matching cycles. Thus F sets of k′ module-matching matrices are to be determined for
the next super-frame, while the scheduler is doing the port-level matching for the current
super-frame.

The module-level matching algorithm is composed of two phases, that is, super-frame
matching and super-frame decomposition.

The super-frame matching is to determine a super-frame matrix in accordance with the
queuing status between the switch modules. Each entry in the super-frame matrix represents

Book1099 — “c12” — 2007/2/15 — 9:28 — page 397 — #16

12.8 DUAL-LEVEL MATCHING ALGORITHM FOR CLOS NETWORK 397

Figure 12.15 Pipelined process of the d-MAC matching scheme.

the matching opportunities between each SIM and each SOM in one super-frame. A super-
frame matrix is a k × k matrix with (i) no row/column sum greater than F × k′, and (ii) no
entry greater than F. To determine the super-frame matrix, the d-MAC scheme adopts an
iterative request/grant/accept algorithm, modified from the iSLIP scheme.

The super-frame decomposition is to decompose the super-frame matrix into F × k′
module-matching matrices. Each module-matching matrix records the matching status
between the SIMs and SOMs in one matching cycle of the next super-frame. The matrix-
decomposition problems can be solved by the edge-coloring algorithms. However, the
optimal edge-coloring algorithms are not preferable here because of their high time com-
plexity. Instead, we use a parallel matching heuristic [9] to decompose the super-frame
matrix. This algorithm contains k rounds. In each round, each SIM is communicating with
one of k SOMs. Each SIM/SOM maintains a two-tuple array that contains F × k′ zero-one
variables. Let Wi(Zj) be the array of SIMi(SOMj)

Wi(x, y) =
{

0, if SIMi is unmatched in cycle y of frame x,

1, if it has been matched in cycle y of frame x;

Zi(x, y) =
{

0, if SIMj is unmatched in cycle y of frame x,

1, if it has been matched in cycle y of frame x;

where 1 ≤ x ≤ F and 1 ≤ y ≤ k′.
When SIMi is communicating with SOMj, the d-MAC scheme tries to find as many

common zero entries in Wi and Zj as possible to meet the number given by entry (i, j) in
the super-frame matrix. Note that no more than one “0” entry in the same frame can be
assigned to the same SIM–SOM pair.

When the module-level matching is completed, the matching sequence between SIMs
and SOMs (recorded in the module-matching matrices) is determined for the next super-
frame. The port-level matching algorithm consists of k′ matching cycles in a frame. In each
matching cycle, the port-level matching algorithm includes two steps: (i) the port-to-port
matching assignment; (ii) the central module assignment.

To find the port-to-port matching for the corresponding pair of IM–OM, the d-MAC
scheme adopts an iterative request/grant/accept algorithm, for example, iSLIP. To improve
the matching efficiency, the d-MAC scheme also introduces high-priority and low-priority

Book1099 — “c12” — 2007/2/15 — 9:28 — page 398 — #17

398 CLOS-NETWORK SWITCHES

arbiters in the SIMs. Under the priority mechanism, the VOQs with queue lengths of more
than r cells will send out high-priority requests and have higher priority than the unfilled
ones. To determine an internal routing path for each matched input–output pair, the d-MAC
scheme adopts a heuristic parallel matching algorithm [6] described in Section 12.5.

In the above sections, we discussed various scheduling algorithms for bufferless Clos
network switches in which all scheduling is done upon the packet entering the input mod-
ules of the switch. In the next two sections, we present other two scheduling algorithms
for buffered Clos network switch in which the added buffer in the Clos network switch
relaxes the scheduling so that the architecture and scheduling are more feasible for practical
implementation.

12.9 THE ATLANTA SWITCH

TheATLANTA switch architecture has a three-stage multi-module memory/space/memory
(MSM) arrangement. The MSM configuration uses buffers in the input and output stages,
while the second stage is bufferless. A simple distributed self-routing algorithm is used to
dispatch cells from the input to the output stage. Although cells are routed individually and
multiple paths are provided from each input to each output, cell sequence is preserved due
to its bufferless second stage. Selective backpressure is used from the output to the input
buffers in the fabric, so the required buffers in the output stage are also relatively small.

The ATLANTA architecture provides support for multicast traffic. Cells belonging to
a multicast virtual circuit are always replicated according to a minimum multicast tree,
that is, they are replicated as far downstream as possible in the switch; this minimizes the
amount of resources required to sustain the expansion in traffic volume internally to the
switch due to multicasting. A single copy of a multicast cell is locally stored in each buffer,
and replicated (if necessary) only when the cell is sent to the following stage in the switch
or to its desired destinations.

In the following, we describe the operation of the MSM switch fabric with reference to
the specific 40 × 40 configuration shown in Figure 12.16. The MSM configuration is based
on three main principles:

• By using buffers in the first stage to store cells that cannot be routed to the output
buffers at a given time, the number of paths necessary for nonblocking behavior can
be greatly reduced.

• By using a bufferless center stage, cells belonging to the same virtual circuit can be
routed individually without affecting cell sequence.

• By using selective backpressure from the output buffers to the input buffers, buffers
can be located where they are most economical.

Under these design principles in the ATLANTA switch, the memory switch is used to
implement the switching modules in the first and third stages, while crossbars are imple-
mented in the second stage. Each module in the first and third stages must be connected to
all crossbars. All interconnection lines between adjacent stages have the same rate as the
input and output ports. To realize nonblocking in the MSM configuration, it is well known
that its internal capacity must be higher than the aggregate capacity of the input ports. We
call this “expansion.” The required expansion is achieved by connecting fewer than eight
ports to each input and output module. In the 40 × 40 configuration of Figure 12.16, five

Book1099 — “c12” — 2007/2/15 — 9:28 — page 399 — #18

12.9 THE ATLANTA SWITCH 399

Figure 12.16 Schematic configuration of a 40 × 40 multistage ATLANTA switch. (©1997 IEEE.)

ports are connected to each edge module for an expansion factor equal to 5 : 8. The expan-
sion ratio is 1.6 (=8/5). Each module in the first stage maintains 40 groups of queues;
each group corresponds to one of the output ports in the switch. Each module in the third
stage manages a number of groups equal to the number of ports connected to that module
(in this case five).

In order to minimize the required expansion, an efficient routing algorithm is necessary
to route cells from the input to the output modules. Intuitively, the idea is that the fabric
is nonblocking as long as the equivalent service capacity (i.e., the maximum switching

Book1099 — “c12” — 2007/2/15 — 9:28 — page 400 — #19

400 CLOS-NETWORK SWITCHES

capacity provided by the expansion and the routing algorithm) in the input queues is higher
than the aggregate input capacity of those queues. A practical constraint for such a system to
be cost-effective is that the routing algorithm must be fully distributed and independently run
by each input module. The concurrent dispatching algorithm that is used in the ATLANTA
architecture is now discussed.

The concurrent dispatching works as follows. In each time slot, each input module in
the first stage selects up to eight cells to be served in that time slot. The selection process
over the 40 groups of queues uses a two-level weighted-round-robin mechanism.1 Once the
cells are selected, each input module sends up to eight bids to the crossbars, one per each
crossbar. A bid contains the desired destination and service priority of one of the selected
cells. Since there is no coordination among the input modules, a crossbar can receive more
than one bid for the same output module at a time. In case of conflict between two or more
bids, the crossbar selects one as the winning bid. In selecting the winning bid, and generally
in determining whether a bid is successful or not, the crossbar takes into account whether
or not the specific queue in the output module requested by each bid has available buffer
space (the third-stage modules continuously send backpressure information to the crossbars
informing them of the availability of buffers for each queue), and never declares successful a
bid that requests a queue with no available buffer space. Then the crossbar sends a feedback
signal to the input modules, informing each module whether or not the bid was successful,
and in the latter case whether the bid was unsuccessful because of lost contention in the
crossbar or due to selective backpressure from the output modules.

If the bid was successful, in the following time slot the input module transmits the
corresponding cell through the crossbar; in the same time slot, the input module also selects
another cell and initiates a new bidding process for it on that crossbar. If the bid was
unsuccessful because of lost contention in the crossbar, the input module again sends that
same bid to the crossbar in the following time slot. If the bid was unsuccessful because of
backpressure from the output modules, the input module selects a different cell from the
buffer and initiates a bidding process for it in the following time slot.

12.10 CONCURRENT ROUND-ROBIN DISPATCHING (CRRD) SCHEME

To achieve 100 percent throughput by using the random dispatching scheme, the internal
expansion ratio is set to about 1.6 when the switch size is large [8]. Here, we describe
a concurrent round-robin dispatching (CRRD) scheme [5] that can achieve 100 percent
throughput under uniform traffic. The basic idea of CRRD is to use the desynchronization
effect in the Clos-network switch. The desynchronization effect has been studied using
simple scheduling algorithms as iSLIP [7] and dual round-robin matching (DRRM) [6] in
an input-queued crossbar switch. CRRD provides high switch throughput without expanding
the internal bandwidth, while the implementation is simple because only simple round-robin
arbiters are employed.

Basic Architecture. Figure 12.17 shows the CRRD switch. The terminology used in
this section is as follows:

1Cells in each group are further classified into several categories of different service priority.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 401 — #20

12.10 CONCURRENT ROUND-ROBIN DISPATCHING (CRRD) SCHEME 401

Figure 12.17 CRRD switch with virtual output queues (VOQs) in the input modules.

IM Input module at the first stage.
CM Central module at the second stage.
OM Output module at the third stage.
n Number of input ports/output ports in each IM/OM, respectively.
k Number of IMs/OMs.
m Number of CMs.
i IM number, where 0 ≤ i ≤ k − 1.
j OM number, where 0 ≤ j ≤ k − 1.
h Input port (IP)/output port (OP) number in each IM/OM, respectively,

where 0 ≤ h ≤ n − 1.
r Central-module (CM) number, where 0 ≤ r ≤ m − 1.
IM(i) ith IM.
CM(r) rth CM.
OM(j) jth OM.
IP(i, h) hth input port at IM(i).
OP(j, h) hth output port at OM(j).
VOQ(i, v) VOQ at IM(i) that stores cells destined for OP(j, h),

where v = hk + j and 0 ≤ v ≤ nk − 1.
G(i, j) VOQ group at IM(i) that consists of n VOQ(i, j, h)s.
Li(i, r) Output link at IM(i) that is connected to CM(r).
Lc(r, j) Output link at CM(r) that is connected to OM(j).

The first stage consists of k IMs, each of which has an n × m dimension. The second
stage consists of m bufferless CMs, each of which has a k × k dimension. The third stage
consists of k OMs, each of which has an m × n dimension.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 402 — #21

402 CLOS-NETWORK SWITCHES

An IM(i) has nk virtual output queues (VOQs) to eliminate HOL blocking. A VOQ is
denoted as VOQ(i, v). Each VOQ(i, v) stores cells that go from IM(i) to the output port
OP(j, h) at OM(j), where v = hk + j. A VOQ can receive, at most, n cells from n input
ports in each cell time slot. The HOL cell in each VOQ can be selected for transmission
across the switch through CM(r) in each time slot. This ensures that cells are transmitted
from the same VOQ in sequence.

Each IM(i) has m output links. An output link Li(i, r), is connected to each CM(r). A
CM(r) has k output links, each of which is denoted as Lc(r, j), and it is connected to k
OMs, each of which is OM(j). An OM(j) has n output ports, each of which is OP(j, h)

and has an output buffer. Each output buffer receives at most m cells at one time slot, and
each output port at OM forwards one cell in a first-in-first-out (FIFO) manner to the output
line.

CRRD Algorithm. Figure 12.18 illustrates the detailed CRRD algorithm. To determine
the matching between a request from VOQ(i, v) and the output link Li(i, r), CRRD adopts an
iterative matching within IM(i). An IM has m output link arbiters, each of which is associated
with each output link, and each VOQ has a VOQ arbiter as shown in Figure 12.18.

Two phases of dispatching cells from the first stage to the second stage are considered.
In phase 1, at most m VOQs are selected as candidates and the selected VOQ is assigned to
an IM output link. A request that is associated with this output link is sent from IM to CM.
This matching between VOQs and output links is performed only within IM. In phase 2,
each selected VOQ that is associated with each IM output link sends a request from IM to
CM. CMs respond with the arbitration results to IMs so that the matching between IMs and
CMs can be done.

Figure 12.18 CRRD scheme.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 403 — #22

12.10 CONCURRENT ROUND-ROBIN DISPATCHING (CRRD) SCHEME 403

Phase 1. Matching within IM

First iteration
Step 1: Each non-empty VOQ sends a request to every output-link arbiter, each of

which is associated with Li(i, r), where 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ m − 1.
Step 2: Each output link Li(i, r), where 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ m − 1, indepen-

dently searches a request among nk non-empty VOQs. Each output-link arbiter
associated with Li(i, r) has its own pointer PL(i, r), where 0 ≤ i ≤ k − 1 and
0 ≤ r ≤ m − 1. The output-link arbiter starts to search one non-empty VOQ
request from the PL(i, r) in a round-robin fashion. Each output-link arbiter sends
the grant to a requesting VOQ. Each VOQ has its own round-robin arbiter, and one
pointer Pv(i, v), where 0 ≤ v ≤ nk − 1 to choose one output link. TheVOQ arbiter
starts to search one grant out of several grants that are given by the output-link
arbiters from the position of Pv(i, v).

Step 3: TheVOQ that chooses one output link Li(i, r) by using the round-robin arbiter
sends the grant to the selected output link. Note that the pointer PL(i, r) that is
associated with each output link and PV (i, v) that is associated with each VOQ are
updated to one position after the granted position, only if they are matched and
the request is also granted by CM in phase 2.

ith iteration (i > 1)
Step 1: Each unmatched VOQ at the previous iterations sends a request to all the

output-link arbiters again.
Steps 2 and 3: Follow the same procedure as in the first iteration.

Phase 2. Matching between IM and CM

Step 1: After phase 1 is completed, output link Li(i, r) sends the request to the CM.
Then contention control in the CM is performed. Each CM(r) has k pointers Pc(r, j),
where 0 ≤ r ≤ m − 1 and 0 ≤ j ≤ k − 1, each of which corresponds to each OM(j).
The CM makes its arbitration using the pointer Pc(r, j) in a round-robin fashion, and
sends the grants to Li(i, r) of IM(i). The pointer Pc(r, j) is updated when the CM
sends the grant to the IM.

Step 2: If the IM receives the grant from the CM, it sends a corresponding cell from that
VOQ at the next time slot. Otherwise, the IM will not send a cell at the next time slot.
The request that is not granted from the CM will be dispatched again at the next time
slot because the pointers that are related to the ungranted requests are not updated.

The CRRD algorithm has to be completed within one time slot to provide the matching
result every time slot.

Figure 12.18 shows an example of n = m = k = 3, where CRRD is operated at the first
iteration in phase 1. At step 1, VOQ(i, 0), VOQ(i, 3), VOQ(i, 4), and VOQ(i, 6), which are
non-empty VOQs, send requests to all the output-link arbiters. At step 2, output-link arbiters
associated with Li(i, 0), Li(i, 1), and Li(i, 2), select VOQ(i, 0), VOQ(i, 0), and VOQ(i, 3),
respectively, according to their pointers’ positions. At step 3, VOQ(i, 0) receives two grants
from both output-link arbiters of Li(i, 0) and Li(i, 1), selects Li(i, 0) by using its own VOQ
arbiter, and sends a grant to the output-link arbiter of Li(i, 0). Since VOQ(i, 3) receives one
grant from an output-link arbiter Li(i, 2), it sends a grant to the output-link arbiter. With one

Book1099 — “c12” — 2007/2/15 — 9:28 — page 404 — #23

404 CLOS-NETWORK SWITCHES

Figure 12.19 Example of desynchronization effect in CRRD (n = m = k = 2).

iteration, Li(i, 1) cannot be matched with any non-empty VOQs. At the next iteration, the
matching between unmatched non-empty VOQs and Li(i, 1) will be performed.

Desynchronization Effect of CRRD. While the ATLANTA switch suffers contention
at CM [8], CRRD decreases the contention at the CM because pointers PV (i, v), PL(i, r),
and Pc(r, j), are desynchronized.

By using a simple example, desynchronization of the pointers is demonstrated. Consider
the example of n = m = k = 2 as shown in Figure 12.19. We can assume that every VOQ
is always occupied with cells. Each VOQ sends a request to be selected as a candidate at
every time slot. All the pointers are set to be PV (i, v) = 0, PL(i, r) = 0, and Pc(r, j) = 0 at
the initial state. Only one iteration in phase 1 is considered here.

At time slot T = 0, since all the pointers are set to 0, only one VOQ in IM(0), which
is VOQ(0, 0, 0), can send a cell with Li(0, 0) through CM(0). The related pointers with
the grant, PV (0, 0), PL(0, 0), and Pc(0, 0), are updated from 0 to 1. At T = 1, three VOQs,
which are VOQ(0, 0, 0), VOQ(0, 1, 0), and VOQ(1, 0, 0), can send cells. The related pointers
with the grants are updated. FourVOQs can send cells at T = 2. In this situation, 100 percent
switch throughput is achieved. There is no contention at the CMs from T = 2 because the
pointers are desynchronized.

12.11 THE PATH SWITCH

If we consider each input module and each output module as a node, a particular connection
pattern in the middle stage of the Clos network can be represented by a regular bipartite
multigraph with node degree m as illustrated in Figure 12.20, where each central module
corresponds to a group of n edges, each connecting one distinct pair of input–output nodes
(modules).

Suppose the routing algorithm of the Clos network is based on dynamic cell switching,
and the amount of traffic from input module Ii to output module Oj is λij cells per time slot.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 405 — #24

12.11 THE PATH SWITCH 405

Figure 12.20 Correspondence between the middle-stage route scheduling in a three-stage Clos
network (a) and the edge-coloring of the equivalent regular bipartite multigraph (b). (©1997 IEEE.)

The connection pattern will change in every time slot according to arrival packets, and the
routing will be calculated on a slot-by-slot basis. Let eij(t) be the number of edges from Ii

to Oj of the corresponding bipartite multigraph in time slot t. Then the capacity Cij of the
virtual path between Ii and Oj must satisfy

Cij = lim
T→∞

∑T
t=1 eij(t)

T
> λij. (12.5)

On the other hand, the routing of a circuit switched Clos network is fixed, and the connection
pattern will be the same in every time slot. The capacity satisfies

Cij = eij(t) = eij > λij. (12.6)

which implies that the peak bandwidth Cij is provided for each virtual circuit at call set-up
time, and it does not take the statistical multiplexing into consideration at all. We conceived
the idea of quasi-static routing, called path switching, using a finite number of different
connection patterns in the middle stage repeatedly, as a compromise of the above two
extreme schemes. For any given λij, if

∑
i λij < n ≤ m, and

∑
j λij < n ≤ m, we can always

find a finite number, f , of regular bipartite multigraphs such that

∑f
t=1 eij(t)

f
> λij, (12.7)

where eij(t) is the number of edges from node i to node j in the tth bipartite multigraph. The
capacity requirement (12.5) can be satisfied if the system provides connections repeatedly
according to the coloring of these f bipartite multigraphs, and these finite amounts of routing
information can be stored in the local memory of each input module to avoid the slot-by-slot

Book1099 — “c12” — 2007/2/15 — 9:28 — page 406 — #25

406 CLOS-NETWORK SWITCHES

computation of route assignments. The path switching becomes circuit switching if f = 1,
and it is equivalent to cell switching if f → ∞.

The scheduling of path switching consists of two steps, the capacity assignment and the
route assignment. The capacity assignment is to find the capacity Cij > λij for each virtual
path between input module Ii and output module Oj; it can be carried out by optimizing some
objective function subject to

∑
i Cij = ∑

j Cij = m. The choice of the objective function
depends on the stochastic characteristic of the traffic on virtual paths and the quality of
service requirements of connections.

The next step is to convert the capacity matrix, [Cij], into edge-coloring of a finite number,
f , of regular bipartite multigraphs, each of them representing a particular connection pattern
of central modules in the Clos network. An edge-coloring of a bipartite multigraph is to
assign m distinct colors to m edges of each node such that no two adjacent edges have the
same color. It is well-known that a regular bipartite multigraph with degree m is m-colorable
[10, 11]. Each color corresponds to a central module, and the color assigned to an edge
from input module i to output module j represents a connection between them through the
corresponding central module.

Suppose that we choose a sufficiently large integer f such that fCij are integers for all
i, j, and form a regular bipartite multigraph, called capacity graph, in which the number of
edges between node i and node j is fCij. Since the capacity graph is regular with degree
fm, it can be edge-colored by fm different colors [11]. Furthermore, it is easy to show
that any edge-coloring of the the capacity graph with degree fm is the superposition of the
edge-coloring of f regular bipartite multigraphs of degree m. Consider a particular color
assignment a ∈ {0, 1, . . . , fm − 1} of an edge between input node Ii and output node Oj of
the capacity graph. Let

a = r · f + t, (12.8)

where r ∈ {0, 1, . . . , m − 1} and t ∈ {0, 1, . . . , f − 1} are the quotient and the remainder of
dividing a by f , respectively. The mapping g(a) = (t, r) from the set {0, 1, . . . , fm − 1} →
{0, 1, . . . , f − 1} × {0, 1, . . . , m − 1} is one-to-one and onto, that is

a = a′ ⇐⇒ t = t′ and r = r′.

That is, the color assignment a, or equivalently the assignment pair (t, r), of the edge
between Ii and Oj indicates that the central module r has been assigned to a route from Ii

to Oj in the tth time-slot of every cycle. Adopting the convention in the TDMA system,
each cycle will be called a frame and the period f frame size. As illustrated by the example
shown in Fig. 12.21, where m = 3 and frame size f = 2, the decomposition of the edge-
coloring into assignment pairs guarantees that route assignments are either space interleaved
or time interleaved. Thus, the relation (12.8) will be called the time-space interleaving
principle.

12.11.1 Homogeneous Capacity and Route Assignment

For uniform traffic, where the distribution of traffic loading between input modules and
output modules is homogeneous, the fm edges of each node can be evenly divided into
k groups, where k is the total number of input (output) modules. Each group contains
g = fm/k edges between any I/O pair, where the frame size f should be chosen properly

Book1099 — “c12” — 2007/2/15 — 9:28 — page 407 — #26

12.11 THE PATH SWITCH 407

Figure 12.21 Illustration of time-space interleaving principle. (©1997 IEEE.)

to make the group size g an integer. The edges of this capacity graph can be easily colored
by the Latin Square given in Table 12.1, where each Ai, 0 ≤ i ≤ k − 1, represents a set of
distinct colors, for example,

A0 = {0, 1, . . . , g − 1}; A1 = {g, g + 1, . . . , 2g − 1}; · · ·
Ak−1 = {(k − 1)g, (k − 1)g + 1, . . . , kg − 1}.

Since each number in the set {0, 1, . . . , fm − 1} appears only once in any row or column in
the table, it is a legitimate edge-coloring of the capacity graph. The assignment a = (t, r)
of an edge between the Ii/Oj pair indicates that the central module r will connect the input
module i to output module j in the tth slot of every frame. As an example, for m = 3 and
k = 2, we can choose f = 2 and thus g = 3.

Then, the groups of colors are A0 = {0, 1, 2} and A1 = {3, 4, 5}, respectively. The
procedure described above is illustrated in Figure 12.22, and the correspondence between the
route assignments and the connection patterns in the middle stage is shown in Figure 12.23.

TABLE 12.1 Latin Square Assignment

O0 O1 O2 · · · Ok−1

I0 A0 A1 A2 · · · Ak−1

I1 Ak−1 A0 A1 · · · Ak−2

...
...

...
...

. . .
...

Ik−1 A1 A2 A3 · · · A0

Book1099 — “c12” — 2007/2/15 — 9:28 — page 408 — #27

408 CLOS-NETWORK SWITCHES

Figure 12.22 Route assignment by Latin Square for uniform traffic.

In the above example, since the number of central modules m is greater than the number
of input modules k, it is possible that more than one central module is assigned to some I/O
pairs in one time slot. In the case that m < k, there are not enough central modules for all
I/O pairs in one time slot assignment. Nevertheless, the total number of central modules
assigned to every I/O pair within a frame should be the same, for uniform input traffic to
fulfill the capacity requirement, and it is equal to g = fm/k. This point is illustrated in the
following example. For m = 4 and k = 6, we choose f = 3 and g = 2. The same method
will result in the connection patterns shown in Figure 12.24. It is easy to verify that the
number of central modules (paths, edges) assigned for each I/O pair is equal to g = 2 per
f = 3 slots.

12.11.2 Heterogeneous Capacity Assignment

The capacity assignment in a cross-path switch is virtual-path based. It depends on the traffic
load on each virtual path to allocate the capacity and determine the route assignment. The
Latin Square offers a legitimate capacity assignment with homogeneous traffic, but it may
not be effective anymore with heterogeneous traffic with non-uniformly distributed traffic
load over the virtual paths. A more general assignment method is therefore introduced and
the procedure is illustrated in Figure 12.25. The assignment procedure has four steps, each
of which will be explained along with an example in the following subsections.

Book1099 — “c12” — 2007/2/15 — 9:28 — page 409 — #28

12.11 THE PATH SWITCH 409

Figure 12.23 Route scheduling in the middle-stage for uniform traffic. (©1997 IEEE.)

Virtual Path Capacity Allocation (VPCA). This step is to allocate capacity to each
virtual path based on the traffic loads. It can be formulated as an optimization problem with
some traffic modeling.

Figure 12.24 Route scheduling in central modules for the second example of uniform traffic. (©1997
IEEE.)

Book1099 — “c12” — 2007/2/15 — 9:28 — page 410 — #29

410 CLOS-NETWORK SWITCHES

Figure 12.25 Procedure of capacity and route assignment.

Consider the cross-path switch with parameters n = 3, k = 3, and m = 4. Suppose the
traffic matrix is given by

T =

 1 1 1

2 1 0
0 1 1


 , (12.9)

the capacity assignment matrix calculated by the minimization of input-stage delay with
M/D/1 model is

C =

 1.34 1.28 1.38

2.66 1.34 0
0 1.38 2.62


 . (12.10)

The Round-Off Procedure. Some elements in the resulting capacity matrix may be
non-integers. When they are rounded into integers that are required in the route assignment,
round-off error arises. The concept of frame size is used to reduce the round-off error. Each
element in the capacity matrix is multiplied by the frame size. Then the capacity per slot
is translated into capacity per frame (see below). After that, we round the matrix into an
integer matrix.

C =

 1.34 1.28 1.38

2.66 1.34 0
0 1.38 2.62


 ×f =3−→


 4.02 3.84 4.14

7.98 3.82 0
0 4.14 7.86




rounding−→

 4 4 4

8 4 0
0 4 8


 = E. (12.11)

The round-off error is inversely proportional to f . That is, the error can be arbitrary small
if the frame size is sufficiently large. However, since the amount of routing information
stored in the memory is linearly proportional to f , the frame size is limited by the access
speed and the memory space of input modules. In practice, the choice of frame size f is a

Book1099 — “c12” — 2007/2/15 — 9:28 — page 411 — #30

REFERENCES 411

Figure 12.26 Route Scheduling example (heterogenous traffic). (©1997 IEEE.)

compromise between the round-off error and the memory requirement. In general,

E =




e0,0 e0,1 · · · e0,k−1

e1,0 e1,1 · · · e1,k−1

...
...

. . .
...

ek−1,0 ek−1,1 · · · ek−1,k−1


 � f · C,

and ∑
j

eij =
∑

i

eij = f · m. (12.12)

In the above matrix E, each element eij represents the number of the edges between the
input module i and output module j in the k × k capacity graph, in which each node has a
degree of fm.

Edge-Coloring. The capacity graph can be colored by fm colors, and each color represents
one distinct time-space slot based on the time-space interleaving principle (12.8). Coloring
can be found by complete matching, which is repeated recursively to reduce the degree
of every node one-by-one. One general method to search for a complete matching is the
so-called Hungarian algorithm or alternating-path algorithm [10, 12]. It is a sequential
algorithm with the worst time complexity O(k2), or totally O(fm × k2) because there are
fm matchings. If each of fm and k is a power of two, an efficient parallel algorithm proposed
in [13] for conflict-free route scheduling in a three-stage Clos network with time complexity
of O(log2(fmk)) can be used. Through the time-space interleaving, the middle-stage routing
pattern is obtained in Figure 12.26.

REFERENCES

[1] J. Hopcroft and R. Karp, “An n 5/2 algorithm for maximum matchings in bipartite graphs,”
SIAM Journal on Computing, vol. 2, no. 4, pp. 225–231 (1973).

[2] R. Cole and J. Hopcroft, “On edge coloring bipartite graph,” SIAM Journal on Computing,
vol. 11, no. 3, pp. 540–546 (1982).

Book1099 — “c12” — 2007/2/15 — 9:28 — page 412 — #31

412 CLOS-NETWORK SWITCHES

[3] H. J. Chao, C. Lam, and E. Oki, Broadband Packet Switching Technologies – A Practical Guide
to ATM Switches and IP Routers. John Wiley & Sons, Inc., Hoboken, New Jercy, 2001.

[4] H. J. Chao and S. Y. Liew, “A new optical cell switching paradigm,” in Proc. International
Workshop on Optical Burst Switching, Dallas, Texas, pp. 120–132 (Oct. 2003).

[5] E. Oki, Z. Jing, R. Rojas-Cessa, and H. J. Chao, “Concurrent round-robin-based dispatching
schemes for Clos-network switches,” IEEE/ACM Transactions on Networking, vol. 10, no. 6,
pp. 830–844 (Dec. 2002).

[6] Y. Li, S. Panwar, and H. J. Chao, “The dual round-robin matching switch with exhaustive service,”
in Proc. High Performace Switching and Routing (HPSR) 2002, Kobe, Japan (May 2002).

[7] N. McKeown, “iSLIP: a scheduling algorithm for input-queued switches,” IEEE/ACM
Transactions on Networking, vol. 7, no. 2, pp. 188–201 (Apr. 1999).

[8] F. M. Chiussi, J. G. Kneuer, and V. P. Kumar, “Low cost scalable switching solutions for broad-
band networking: the ATLANTA architecuture and chipset,” IEEE Communications Magazine,
vol. 35, issue 12, pp. 44–53 (Dec. 1997).

[9] M. Karol and C.-L. I, “Performance analysis of a growable architecture for broadband packet
(ATM) switching,” in Proc. IEEE GLOBECOM’89, Dallas, Texas, pp. 1173–1180 (Nov. 1989).

[10] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays · Trees ·
Hypercubes. Morgan Kaufmann, San Francisco, California, 1992.

[11] R. J. Wilson, Introduction to Graph Theory. Academic Press, New York, 1972.

[12] R. J. McEliece, R. B. Ash, and C. Ash, Introduction to Discrete Mathematics. McGraw-Hill,
New York, 1989.

[13] T. T. Lee and S. Y. Liew, “Parallel algorithm for benes networks,” in Proc. IEEE INFOCOM
’96, San Francisco, California (Mar. 1996).

