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CHAPTER 11

CROSSPOINT BUFFERED
SWITCHES

The performance of packet switches are constrained by memory speed and the efficiency of
the arbitration scheme used to select the cells that will traverse the switch at a given time.
Output buffered (OB) switches use no arbitration at the inputs as the output buffers run
at N times faster than the speed of external links. Therefore, for a limited memory speed,
the size of such switches is restricted to a small number of ports as link rates increase.
On the other hand, the memory in input buffered (IB) switches runs at link-rate speeds,
making these switches attractive. However, IB switches need to perform matching between
input and outputs to resolve input and output contentions. Fast matching schemes for IB
switches can be modeled as parallel matchings, where N input and output arbiters perform
the parallel selection and communication among them to decide the matching results. This
communication adds overhead time to the matching process. The parallel matching process
can be characterized by three phases: request, grant, and accept. Therefore, the resolution
time would be the time spent in each of the selection phases plus the transmission delays
for the exchange of request, grant, and accept information. As an example, a matching
scheme must perform input or output arbitration within 6.4 ns in an IB switch with 40 Gbps
(OC-768) ports and 64-byte cells, as input and output arbitrations may use up to half of a
time slot, assuming that the transmission delays are decreased to a negligible value (e.g., the
arbiters are implemented in a single chip, in a centralized way).

A solution to minimize the time overhead is to use buffers in the crosspoints of a crossbar
fabric, or buffered crossbar. In a buffered crossbar switch, an input can avoid waiting
for a matching to be completed before a cell is forwarded to the crossbar. However, the
number of buffers grows in the same order as the number of crosspoints, O(N2), making
implementation costly or infeasible for a large buffer size or a large number of ports. As
VLSI technology has matured, buffered crossbars are considered feasible for a moderate
size switch.
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The rest of this chapter is organized as follows. Section 11.1 introduces the basic com-
bined input and crosspoint buffered (CIXB) switch structure. CIXB switches with virtual
output queues (VOQs) at the input ports are discussed in Section 11.2. Sections 11.2.1 to
11.5 describe some variants of CIXB, namely CIXB-k and CIXOB-k, and several scheduling
schemes employed in these switches. More work related to crosspoint buffered switches
can be found in References [1, 2].

11.1 COMBINED INPUT AND CROSSPOINT BUFFERED SWITCHES

A conventional crosspoint buffered switch is shown in Figure 11.1. It consists of a crossbar
N × N switch fabric and buffers that are placed at each crosspoint. This switch and the
memory operate at the line speed. When a cell arrives from an input port, it will enter
the designated crosspoint buffer and wait to be scheduled to the output link. Although it
has high throughput performance equivalent to that of output buffered switches, it is not
feasible in implementation. The required number of buffers grows quadratically with N .
Since crosspoint buffers are not shared among them, the total required buffer size is large,
making it difficult to include the buffers on a chip.

To reduce the memory in the crosspoint buffer, CIXB switches were proposed [3], where
large input buffers and small crosspoint buffers were adopted. The CIXB switch operates
at the line rate, and its architecture is shown in Figure 11.2. When a cell arrives, it is first
buffered at the input buffer, and transferred to the crosspoint buffer when it has a space.
The number of crosspoint buffers and input buffers are N2 and N , respectively. Different
from the conventional crosspoint buffered switch, CIXB switches only need a small buffer
at crosspoint. Thus, the total buffer size of the CIXB switch is much smaller than that of
the conventional crosspoint buffered switch for the same switching performance.

Simulations show that the CIXB switch has superior traffic characteristics to the con-
ventional crosspoint buffered switches. In the simulation, the switch size is assumed to
be 32 and the input offered load is set to 0.8. Input buffer size is set to 8, 16, and 24

Figure 11.1 Conventional crosspoint buffered switch.
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Figure 11.2 Combined input and crosspoint buffered (CIXB) switch with FIFO queuing at inputs.

to 32 cells, respectively. A simple ring arbitration mechanism (i.e., round robin) is used
to select cells from the crosspoint buffers on the same column. The simulation results in
Figure 11.3 show the cell loss rates as a function of crosspoint buffer size. To achieve a cell
loss rate of less than 10−8, the conventional crosspoint buffered switch needs 8-cell buffers
at each crosspoint, and the CIXB switch needs only 4-cell buffers if 32-cell input buffers
are used.

Figure 11.3 Cell loss rates as a function of crosspoint buffer size.
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11.2 COMBINED INPUT AND CROSSPOINT BUFFERED
SWITCHES WITH VOQ

Although the CIXB switch can have a very high throughput performance, it suffers from
head-of-line (HOL) blocking, and thus does not achieve 100 percent throughput. To
overcome the throughput degradation due to the HOL blocking, a CIXB switch with virtual
output queuing (VOQ) at the input ports was proposed in [4]. From now on, we will refer
to a CIXB switch in which VOQ is used at each input port simply as a CIXB/VOQ or just
CIXB switch.

Figure 11.4 shows the architecture of a CIXB switch. A crosspoint (XP) element in the
crossbar (BX) that connects input port i (0 ≤ i ≤ N − 1) to output port j (0 ≤ j ≤ N − 1)

is denoted as XPi, j. The switch has the following major components:

Input Buffers. There are N VOQs at each input. A VOQ at input i that stores cells for
output j is denoted as VOQi, j.

Crosspoint Buffer (XPB). The XPB of XPi, j is denoted as XPBi, j. The size of XPBi, j is
k cells. We call a CIXB switch with an XPB size k, CIXB-k.

Flow Control. A credit-based flow-control mechanism indicates input i whether XPBi, j

has room available for a cell or not. Each VOQ has a credit counter, where the
maximum count is the number of cells that XPBi, j can hold. When the number of
cells sent by VOQi, j reaches the maximum count, VOQi, j is considered not eligible
for input arbitration and overflow on XPBi, j is avoided. The count is increased by
one every time a cell is sent to XPBi, j, and decreased by one every time that XPBi, j

forwards a cell to output j. If XPBi, j has room for, at least, one cell, then VOQi, j is
considered eligible by the input arbiter.

Figure 11.4 CIXB switch model with VOQ at inputs.



Book1099 — First Proof — “c11” — 2007/2/8 — 7:54 — page 371 — #5

11.2 COMBINED INPUT AND CROSSPOINT BUFFERED SWITCHES WITH VOQ 371

Input and Output Arbitration. Round-robin arbitration is used at the input and output
ports. An input arbiter selects an eligible VOQi, j for sending a cell to XPB(i, j).
VOQ elegibility is determined by the flow-control mechanism. An output arbiter
selects a non-empty XPBi, j for forwarding. Input and output arbitrations are performed
separately, therefore, reducing cell selection complexity.

11.2.1 CIXB with One-Cell Crosspoint Buffers (CIXB-1)

Let us assume CIXB-1 has the following traffic model: All inputs have uniform traffic where
each VOQi, j receives cells at a rate ρi, j such that

∑N−1
i=0 ρi, j = 1.0,

∑N−1
j=0 ρi, j = 1.0, and

each VOQi, j has a capacity σi, j(t) such that 0 < σi, j(t) < ∞ and σi, j(t) is large. CIXB-1
reaches a state such that the number of cells entering the system equals the number of cells
leaving it, defining 100 percent throughput. CIXB-1 has the following property:

Property 1. CIXB-1 achieves 100 percent throughput under uniform traffic [5].

For this property to be effective, we need to consider the round-trip time. Round-trip time
(RT ) is defined as the sum of the delays of the input arbitration (IA), the transmission of a
cell from an input port to the crossbar (d1), the output arbitration (OA), and the transmission
of the flow-control information back from the crossbar to the input port (d2). Figure 11.4
shows an example of RT for input 0 by showing the transmission delays for d1 and d2,
and arbitration times, IA and OA. Cell and data alignments are included in the transmission
times. The condition for CIXB-1 to provide 100 percent throughput is such that, in general:

RT = d1 + OA + d2 + IA ≤ k. (11.1)

In other words, RT time slots must be absorbed by the number of available cells in the XPB.
The arbitration times IA and OA are constrained to IA ≤ 1 and OA ≤ 1.

As the cost of implementing memory in a chip is still considerable, although feasible
with currently available VLSI technologies, it is important to minimize the XPB size within
the implementation limits. A back-pressure flow control is expensive to consider with CIXB
as the XPB size needs to be at least twice RT (k ≥ 2RT ) to avoid underflow and, therefore,
performance degradation. To evaluate this, consider the worst-case scenario: there is only
a single flow in BX from input i to output j. In this case, XPBi, j must have room available
for all cells that can be transmitted to their outputs while the notification of back-pressure
release travels back to input i and a cell travels from input i to XPBi, j (RT time), so that
output port j can continue forwarding cells from input port i. This is why the use of a
credit-based flow control is more cost-effective in CIXB.

11.2.2 Throughput and Delay Performance

The performance of an IB switch using iSLIP scheduling, two combined input-crosspoint
buffered switches, and an OB switch are studied by computer simulation. One of the CIXB
switches is the CIXB-1 and the other uses a pre-determined permutation for input and out-
put selections, where the permutation changes cyclically and in a fixed sequence, as time
division multiplexing (TDM) works. TDM also uses one-cell XPB. iSLIP is used as the
scheduling scheme in the IB switch, as iSLIP is based on round-robin selection. A com-
parison on the performance between IB and CIXB switches, where round-robin selection
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is used, is given. The comparison with the OB switch is used for the best possible perfor-
mance. The traffic patterns studied in this section are uniform and non-uniform traffic with
Bernoulli arrivals. Traffic with uniform distribution with bursty arrivals is also considered.
Here, segmentation and re-assembly delays are not considered. Our simulation results are
obtained with a 95 percent confidence interval.

Uniform Traffic. The performance of various switches is compared here, including IB
switches with 1SLIP and 4SLIP, CIXB-1, TDM, and OB switches under uniform traffic
with Bernoulli and bursty arrivals (on–off modulated Markov process) for a switch size
of 32 × 32. Note that 4 is almost the optimum number of iterations for iSLIP, as more
iterations offer no significant measurable improvements [6]. Figure 11.5 shows that, under
this traffic model, all switches provide 100 percent throughput. CIXB-1 provides an average
delay close to OB. 1SLIP and TDM have similar average delay for high loads, and CIXB-1
delivers shorter average cell delay than 4SLIP and TDM. The reason why CIXB delivers
this high performance is because at a given time slot, there could be more than one cell from
input i stored in crosspoints for different outputs that depart at the same time. Therefore,
several cells from input i could leave the switch in one time slot. In an IB switch, the number
of cells that can traverse to an output port is one.

This small delay of CIXB-1 remains independent of the switch size according to results
in the work of Rojas-Cessa et al. [7]. A low average cell delay is expected as it is similar to
that of an OB switch.

Figure 11.6 shows the average delay performance of TDM, CIXB-1, and OB under
on–off arrival uniform traffic. The traffic in this figure has an average burst length (l) of
1, 10, and 100 cells, where the burst length is exponentially distributed. The figure shows
that CIXB-1 follows the throughput and average cell delay of an OB switch. TDM has a
significantly larger delay than CIXB-1. Some differences can be noted between CIXB-1
and OB when the input load is close to 1.0.

Nonuniform Traffic. iSLIP, TDM, and CIXB switches were evaluated under three
traffic models with Bernoulli arrivals and nonuniform distributions: unbalanced [7],
asymmetric [8], and Chang’s models [9].

Figure 11.5 Performance of CIXB, TDM, and OB under uniform traffic.
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Figure 11.6 Performance of CIXB, TDM, and OB under bursty uniform traffic.

UnbalancedTraffic. The unbalanced traffic model uses a probability w as the fraction of
input load directed to a single predetermined output, while the remaining load is directed
to all outputs with a uniform distribution. Let us consider input port s, output port d, and
the offered input load ρ for each input port. The traffic load from input port s to output
port d, ρs,d is given by ρs,d = ρ{w + [(1 − w)/N]} if s = d, and ρs,d = ρ[(1 − w)/N]
otherwise, where N is the switch size. Here, the aggregate offered load ρd that goes to
output d from all input ports is given by ρd = ∑

s ρs, d = ρ{w + N × [(1 − w)/N]} = ρ.
When w = 0, the offered traffic is uniform. On the other hand, when w = 1, the traffic is
completely directional. This means that all the traffic of input port s is destined for output
port d only, where s = d. Figure 11.7 shows iSLIP, CIXB-1, and TDM under unbalanced
traffic for 0 ≤ w ≤ 1, and observed the minimum throughput in terms of w achieved by
each switch. The throughput of iSLIP with 1 and 4 iterations are 64 percent and 80 percent,
respectively. The throughput of CIXB-1 is 84 percent, higher than iSLIP. The throughput
for TDM drops to almost 0 when w = 1.0, because of the predetermined connectivity that
TDM provides, independently of the existing traffic. CIXB provides a higher throughput

Figure 11.7 Througput of iSLIP, TDM, and CIXB-1 under unbalanced traffic.
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Figure 11.8 Delay performance of TDM and CIXB-1 under asymmetric and Chang’s traffic models.

than IB switches with round-robin schemes [7] at the expense of having buffers in the
crosspoints. These results clearly show the advantage of using a round-robin scheme and
crosspoint buffers under unbalanced traffic.

Chang’s and Asymmetric Traffic. Chang’s traffic model can be defined as ρ = 0 for
i = j and ρ = 1/(N − 1), otherwise. The asymmetric traffic model can be defined as having
different load for each input–output pair, such as ρi,(i+j) mod N = ajρ, where a0 = 0, a1 =
(r − 1)/(rN − 1), aj = a1rj−1 ∀j �= 0, and ρi, j/ρ(i+1) mod N , j = r, ∀i �= 0, (i + 1) mod
N �= 0, and r = (100 : 1)−1/(N−2). Figure 11.8 shows the average cell delay of iSLIP, TDM,
and CIXB-1 under asymmetric and Chang’s traffic models. iSLIP delivers close to 71 percent
throughput under asymmetric traffic and close to 95 percent throughput under Chang’s
traffic. 4SLIP delivers close to 100 percent throughput under these two traffic patterns.
TDM provides 20 percent throughput under asymmetric traffic, and close to 95 percent
throughput under Chang’s traffic. CIXB delivers 100 percent throughput and lower average
cell delay than the other switches under both traffic models. These results show that having
buffers in the crosspoints and round-robin arbitration improves the switching performance.

Buffer and Switch Size Effect on CIXB-k . A 32 × 32 CIXB-k for k = {1, 2, 8} under
uniform traffic was evaluated for the average delay performance and tail delay distribution.
Because the similarity of the average cell delay in CIXB-1 and in OB switches, the value of
k in CIXB-k produces non-measurable differences on the average delay performance under
Bernoulli and bursty (l = 10) uniform traffic, as shown previously [7].

A more stringent test is performed by measuring the tail delay distribution of CIXB-k.
Figure 11.9 shows that the tail delay distribution under Bernoulli uniform traffic, for dif-
ferent input loads, presents non-measurable differences for any k value. This is because
as long as the k value complies with (11.1), the crosspoint buffers avoid underflow states.
By providing a larger k, the number of cells leaving BX will not be larger as the optimum
performance of the switch has already been reached. Therefore, the crosspoint buffer size
can be kept as small as possible to minimize the amount of in-chip memory without having
performance degradation.
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Figure 11.9 Tail delay distribution for different input loads and crosspoint buffer size k under
uniform traffic.

The effect of k under non-uniform traffic is studied in a 32 × 32 CIXB-k, with k values
between 1 and 32. Figure 11.10 shows the effect of k in CIXB under unbalanced traffic. This
figure shows that the throughput of CIXB under non-uniform traffic is slightly improved
when a larger k is provided. When k = N = 32, the throughput barely reaches 99 percent.
These results indicate that to achieve 100 percent throughput under this traffic pattern, a
very large k is needed. To provide a higher throughput under unbalanced traffic, a weighted
round-robin scheme [6, 10] can be used. The weight of an input or output can be assigned
by considering the queue occupancy or cell ages.

According to previous results, the high performance of CIXB is also independent of the
switch size [7]. This result differs from the one that has been observed in IB switches.

Figure 11.10 Effect of crosspoint buffer size under unbalanced traffic for CIXB-k.
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Figure 11.11 Effect of buffer size and RT under unbalanced traffic in CIXB-(k − RT).

11.2.3 Non-Negligible Round-Trip Times in CIXB-k

In the cases above, we assumed small round-trip times, such that (11.1) is satisfied with
k = 1. Although the consideration of k = 1 is practical, the distance between the buffered
crossbar and the port cards may be longer than one time slot. Therefore, k needs to be
increased to comply with (11.1).

In general, CIXB can be denoted as CIXB-(k − RT), where k ≥ RT , for non-negligible
RT values (i.e., RT ≥ 1). We call this the general CIXB model. To observe the performance
of a CIXB-(k − RT ) switch, we simulated a switch with different k and RT values for
k − RT = 0 under unbalanced traffic. Figure 11.11 shows the throughput performance of
CIXB-(k − RT ). The throughput performance is improved by larger k values and slightly
decreased by larger RT .

11.3 OCF_OCF: OLDEST CELL FIRST SCHEDULING

The scheduling algorithms for CIXB/VOQ switches used in [4] are OCF_OCF (oldest cell
first), which selects a cell based on delay time. The algorithms that select a cell based on
delay time have better cell delay time performance than the algorithms based on the simple
ring arbitration [11].

Output Scheduling. The scheduler at output port j selects the HOL cell with largest delay
time. If more than one buffer is selected, then the scheduler at output port j selects,
from among these buffers, the buffer that queues a cell from the input port whose
identifier is the smallest. Then the HOL cell at the selected buffer is transmitted to
output port j.

Input Scheduling. The scheduler at input port i selects the logical queue that has the cells
and the smallest queue length of the crosspoint buffer. If more than one logical queue
is selected, then the logical queue in which the HOL cell has the longest delay time
will be selected. The HOL cell of the selected queue is transmitted to its crosspoint
buffer.
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Figure 11.12 Probability of delay time in different scheduling algorithms.

To evaluate the performance of OCF_OCF, several simulations are performed. The traffic
model used in simulations is assumed to be uniform, independent, identically distributed
(i.i.d.).

The OCF_OCF is compared with a scheduling algorithm based on the ring arbitration.
Figure 11.12 shows the probability of the delay time exceeding a certain time d. We assume
that the offered load ρ = 0.97 and the buffer size at each crosspoint is one. It can be seen
that the CIXB switch using the OCF_OCF has better cell delay time performance.

A CIXB switch using the OCF_OCF is compared with an input queued switch using the
i-OCF algorithm [12] in terms of mean cell delay time in another simulation. With i = 32,
it means the scheduling algorithm tries up to 32 times to find a conflict-free match between
input and output ports. The buffer size at each input port in the CIXB switch and the
input queued switch is infinite. The simulation results are shown in Figure 11.13, where
CIXB_M1 and CIXB_M2 mean that the buffer size at each crosspoint in the CIXB switch
is either one or two. A cell arriving at the CIXB switch must go through a buffer at an input
port and a buffer at a crosspoint. The minimum cell delay time for the CIXB switch is two
and that for the input-queued switch is one. From the figure, we can see that the mean cell
delay time for the CIXB switch is larger than that for the input-queued switch at ρ ≤ 0.7,
and smaller when ρ ≥ 0.7. This is because throughput of the CIXB switch is larger than
that of the input-queued switch. It can also been seen that CIXB_M2 performs better than
CIXB_M1.

A CIXB switch using OCF_OCF is also compared with a conventional crosspoint switch
in terms of required buffer size. Here, it is assumed that the OCF algorithm is used as the
scheduling algorithm for the crosspoint queued switch. Figure 11.14 shows the required
buffer size per port for the CIXB switch and the conventional crosspoint queued switch with
a cell loss ratio of under 10−9. It can been seen that the required buffer size for the CIXB
switch is much less than that for the crosspoint queued switch, because the CIXB switch
allows the input buffer to be shared by multiple output ports.
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Figure 11.13 Mean delay time: CIXB versus input-queued switch.

Figure 11.14 Buffer size requirements.

11.4 LQF_RR: LONGEST QUEUE FIRST AND ROUND-ROBIN
SCHEDULING IN CIXB-1

An N × N CIXB switch fabric with one buffer per crosspoint is cost-effective because
the required memory speed is only twice the line rate for both the inputs and for the
N2 crosspoints. A scheduling algorithm in such a CIXB-1 switch, which uses longest
queue first (LQF) scheduling for VOQs at the inputs and round-robin (RR) scheduling for
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the crosspoints, was presented by Javidi et al. [13]. Through fluid model techniques, it
was shown that LQF_RR scheduling achieves 100 percent throughput for input traffic that
satisfies the strong law of large numbers and has a load ≤1/N for any input/output pair.

Some definitions and notations are given below:

• Zi, j(n): The number of packets in VOQi, j at the beginning of time slot n.
• Ai, j(n): The cumulative number of packets that have arrived at VOQi, j by time n.
• Di, j(n): The cumulative number of packets that have departed from VOQi, j by time n.

Assume that the arrivals follow the strong law of large number; that is, with
probability one,

lim
n→∞

Ai, j(n)

n
= λi, j i, j = 1, . . . , N , (11.2)

where λi, j is the arrival rate at VOQi, j.
By definition, a pair of input and output service algorithms is called “rate stable” if with

probability one,

lim
n→∞

Di, j(n)

n
= λi, j i, j = 1, . . . , N . (11.3)

In [14], it has been proved that a switch operating under rate-stable service achieves
100 percent throughput.

Theorem 1. If λi, j < 1/N , a CIXB switch using the LQF_RR algorithm is rate stable.

Theorem 1 is proved using a fluid model for the switch. Its proof can be found by referring
to the work of Javidi et al. [13].

11.5 MCBF: MOST CRITICAL BUFFER FIRST SCHEDULING

Up until to now, we have introduced several scheduling schemes for the CIXB switch, such
as round-robin (RR_RR), OCF_OCF, and LQF_RR. For the input scheduling schemes
such as LQF and OCF, the arbiter decisions are very time consuming due to the need for
comparing a large number of values (i.e., queue length or cell age). In an attempt to reduce
the arbitration complexity while keeping good performance, a scheduling scheme based on
the shortest internal buffer first (SBF) at the input side and based on the longest internal
buffer first (LBF) at the output side was proposed [15]. Most critical buffer first (MCBF)
does not use any input state information, such as VOQ occupancies or VOQ head-of-line
cells waiting time. The scheduling is based only on the internal buffers information.

Some notations are defined here to explain the MCBF scheduling.

• Eligible VOQ (EVOQ): A VOQi, j is said to be eligible (denoted EVOQi, j) for being
scheduled in the input scheduling process if it is not empty and the internal buffer
XPBi, j is not full.
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• LXPBi (the line of crosspoint buffers): The set of all the internal buffers XPBi, j that
correspond to the same input i.

• NLBi: The number of cells held in LXPBi.
• CXPBj (the column of the crosspoint buffers): The set of internal buffers XPBi, j that

correspond to the same output j.
• NCBj: The number of cells held in CXPBj.

The operation of the MCBF is as follows:

Input-Scheduling (SBF ). For each input i: starting from the highest priority pointer’s
location, select the first EVOQ corresponding to minj{NCBj} and send its HOL cell
to the internal buffer XPBi, j. Move the highest priority pointer to the location j + 1
(mod N).

Output-Scheduling (LBF ). For each output j: starting from the highest priority pointer’s
location, select the first XPBi, j corresponding to maxi{NLBi} and send its HOL cell
to the output. Move the highest priority pointer to the location i + 1 (mod N).

The MCBF scheme has two properties different from LQF and OCF schemes:

1. MCBF is almost stateless. It does its arbitration without any state information of the
input VOQs.

2. MCBF maintains a load balancing among the internal buffers, that is, it keeps the
outputs as busy as possible (work conserving).

The performance evaluation of MCBF, LQF_RR, and OCF_OCF were compared
through two traffic models, bursty uniform and Bernoulli non-uniform, in a 32 × 32 CIXB
switch.

Figure 11.15 Average delay under bursty uniform traffic.
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Figure 11.15 shows the average delay performance under bursty uniform traffic with
average burst length (l) of 1, 10, 50, and 100 cells, respectively. Under heavy load, SBF_LBF
has the smallest delay amongst all the schemes. At 99 percent load and burst length of 10,
SBF_LBF has an average delay less than 80 percent that of LQF_RR. With an average burst
length of 50 and at 99 percent load SBF_LBF has an average delay of 2523, while LQF_RR
has 3014 and OCF_OCF has 3311.
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