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CHAPTER 10

THE ABACUS SWITCH

The switches based on the knockout concept suffer from cell loss due to the lack of routing
links in the switch fabric, for example, the concentrator in the knockout switch or the
multicast grouping network (MGN) in the MOBAS (see Chapter 9). Although we can
engineer the group expansion ratio (L) to achieve a satisfactory cell loss probability, say
10−10, it is based on the assumption that the traffic from different input ports is uncorrelated
and input traffic is uniformly distributed to all output ports. The latter assumption gives
the worst case cell loss probability, while the former assumption may not be realistic for
applications such as Internet Web services. There may be a lot of traffic destined for the same
popular site at the same time, resulting in a so-called hot-spot situation and an unacceptable
cell loss probability. In order to reduce the cell loss rate, excessive cells can be stored at
the input buffers, which results in the switch having buffers at the input and output ports.
The switch to be discussed in this chapter belongs to this category.

We describe a switch that has a similar architecture to that of the MOBAS but does not
discard cells in the switch fabric. When the head-of-line (HOL) cells of the input ports are
sent to the switch fabric, they are held at the input ports until they have been successfully
transmitted to the desired output port. The switch fabric is a crossbar structure, where
switch elements, with the capability of routing cells and resolving contention based on
cells’ priority levels, are arranged in a two-dimensional array and is similar to an abacus.
That’s why the switch is called the Abacus switch. The challenging issue of designing an
input–output buffered switch is to design a fast and scalable arbitration scheme.

The arbitration algorithm proposed in theAbacus switch takes advantage of the capability
that the switch element can resolve contention for the routing links based on their priority
levels. As a result, with some extra feedback lines and logic circuits at the input ports,
the arbitration scheme can be implemented without adding much complexity and cost.
The switch uses a new arbitration scheme to resolve the contention among the HOL cells.
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The arbitration is done in a distributed manner and thus enables the switch to grow to a
large size.

Section 10.1 describes the basic architecture of the Abacus switch. Section 10.2 presents
the new arbitration scheme that is implemented in a distributed manner. Section 10.3
depicts the implementation of an input controller and how it resolves contention resolu-
tion. Section 10.4 discusses the performance of the Abacus in throughput, delay, and loss.
Section 10.5 shows a key component, the ATM routing and concentration (ARC) chip
used to implement the Abacus switch. Section 10.6 describes three approaches to scale the
Abacus switch to 1-Tbit/s capacity. Section 10.7 shows how the Abacus switch can also
route switch packets through the switch fabric.

10.1 BASIC ARCHITECTURE

The Abacus switch [1] is a scalable multicast architecture with input and output buffering.
It uses input buffers to temporarily store cells that lost contention to other inputs and thus
eliminates the possibility of discarding cells due to the loss of contention in the switch fabric,
as is the case with MOBAS. Figure 10.1 shows the architecture of the Abacus switch. It
consists of input port controllers (IPCs), a MGN, multicast translation tables (MTTs), small
switch modules (SSMs), and output port controllers (OPCs). The architecture is very similar
to that of the MOBAS with the exception that the MGN2 in the MOBAS is replaced with
the SSM and the Abacus switch has feedback lines from the RMs to the IPCs to facilitate
output port contention resolution (see Section 10.2 for details). The RM (routing module)
in the Abacus switch is exactly the same as the SM in the MOBAS and the term ‘RM’ will
be used from now on. If the group size, M, is carefully chosen in a way that the second stage
switch network’s capacity is within 20 Gbit/s, it will be more cost-effective to implement
the MGN2 in the MOBAS with a shared-memory switch module. For instance, for M = 32,

Figure 10.1 Architecture of the Abacus switch (©1997 IEEE).
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L = 2, and line rate = 155.52 Mbit/s, the SSM’s capacity is 10 Gbit/s. The IPC performs
similar functions as those in the MOBAS, except that it also assists in resolving contention
among cells that are destined for the same output group and buffering those cells losing
contention.

The switch performs cell replication and cell routing simultaneously. Cell replication is
achieved by broadcasting incoming cells to all RMs, which then selectively route cells to
their output links. Cell routing is performed distributedly by an array of switch elements
(SWEs). The concept of channel grouping described in Section 9.2 is applied to construct
the MGN in order to reduce hardware complexity, where all M output ports are bundled in
a group. For a switch size of N input ports and N output ports, there are K output groups
(K = N/M). The MGN consists of K routing modules; each providing L × M routing links
to each output group. L is defined as the group expansion ratio: the ratio of required routing
links to the group size. Cells from the same virtual connection can be arbitrarily routed to
any one of the L × M routing links and their sequence integrity will be maintained. Based on
an arbitration mechanism to be described in Section 10.2, up to L × M cells from N IPCs
can be chosen in each RM. Cells that lose contention are temporarily stored in an input
buffer and will retry in the next time slot. On the other hand, cells that are successfully
routed through RMs will be further routed to proper output port(s) through the SSMs.

The group expansion ratio L is engineered in such a way that the required maximum
throughput in a switch fabric can be achieved. Performance study shows that the larger M
is, the smaller L is required to be to achieve the same maximum throughput. For instance,
for a group size M of 16 and input traffic with an average burst length of 15 cells, L has
to be at least 1.25 to achieve a maximum throughput of 0.96. But, for a group size M of
32 and the same input traffic characteristic, L can be as low as 1.125 to achieve the same
throughput. Since cell loss does not occur within the Abacus switch (unlike the MOBAS),
L is chosen to achieve sufficiently large maximum throughput and low delay in the input
buffers, but not for cell loss rate as in the MOBAS. Its value can be slightly smaller than
the one in the MOBAS (e.g., for M = 32, L is 2 for a cell loss rate of 10−10).

Each RM in the MGN contains a two-dimensional array of switch elements and an
address broadcaster (AB), as shown in Figure 10.2. It is similar to Figure 9.15 except that
each RM provides a feedback line to all IPCs. The multicast pattern maskers (MPMs) are
not shown here for simplicity.

Figure 10.3 shows routing information for a multicast ATM switch with N = 256 and
M = 16, which consists of several fields, multicast pattern (MP), priority field (P), and a
broadcast channel number (BCN). A MP is a bit map of all the output groups and is used
in the MGN for routing cells to multiple output groups. Each bit indicates if the cell is to
be sent to the associated output group. For instance, if the ith bit in the MP is set to ‘1’, the
cell is to be sent to the ith output group. The MP has K bits for an MGN that has K output
groups (16 in this example). For a unicast call, its multicast pattern is basically a flattened
output address (i.e., a decoded output address) in which only one bit is set to ‘1’ and all
other (K − 1) bits are set to ‘0’. For a multicast call, there is more than one bit set to ‘1’ in
the MP, corresponding to the output groups for which the cell is destined.

A priority field (P), used to assist contention resolution, can be flexibly set to any value
to achieve a desired service preference. For instance, the priority field may consist of an
activity bit (A), a connection priority (C), a buffer state priority (Q), a retry priority (R),
and an input port priority (S). Let us assume the smaller the priority value, the higher the
priority level. The activity bit (A) indicates the validity of the cell. The activity bit (A) is set
to ‘0’ if the cell is valid and set to ‘1’ otherwise. The connection priority (C) indicates the
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Figure 10.2 Multicast grouping network (MGN) (©1997 IEEE).

priority of the virtual connection, which can be determined during the call setup or service
provisioning. The buffer state priority (Q) provides a sharing effect among N input buffers
by allowing the HOL cell in an almost-overflowed buffer (e.g., exceeding a predetermined
threshold) to be transmitted sooner so that the overall cell loss probability is reduced.
The retry priority (R) provides a global first-come-first-served (FCFS) discipline, allowing

Figure 10.3 Routing information used by Abacus switch with N = 256, M = 16.



Book1099 — “c10” — 2007/2/15 — 9:26 — page 340 — #5

340 THE ABACUS SWITCH

a cell’s priority level to move up by one whenever it loses contention once. The retry priority
(R) can initially be set to ‘1111’ and decreased by one whenever losing contention once.
In order to achieve fairness among input ports, the priority levels of the HOL cells at the
input ports dynamically change at each time slot. The input port priority (S) can initially be
set to its input port address with log2 N bits and decreased by one at every time slot, thus
achieving round-robin fairness.

The BCN in Figure 10.3 will be used to find a new multicast pattern in the MTT, allowing
the copied cell to be further duplicated in the SSM. The BCN will also be used by the OPC
to find a new virtual path identifier/virtual channel identifier (VPI/VCI) for each copy of
the replicated cell.

10.2 MULTICAST CONTENTION RESOLUTION ALGORITHM

Here, we describe a novel algorithm that resolves output port contention among the input
ports in a fair manner. It can also perform call splitting for multicasting and thus improves
the system throughput. The output port contention resolution is often implemented by a
device called an arbiter. Most proposed arbiters can only handle unicast calls (i.e., point-to-
point communication) and N-to-1 selection, for example: three phase [2], ring reservation
[3], and centralized contention resolution device [4].

Implementing an arbiter capable of handling call splitting and N-to-multiple selection is
much more challenging in terms of timing constraint. At the beginning of the cell time slot,
the arbiter receives N multicast patterns, one from each input port, and returns acknowl-
edgment to those input ports whose HOL cells have won contention. These cells are then
allowed to transmit to the switch fabric. Let us consider these N multicast patterns, each
with K bits, being stacked up and there are K columns with N bits in each column. Each
column associates with each output group. The arbiter’s job is to select up to, for example,
L × M bits that are set to ‘1’ from each column and repeat the operation for K times, which
must be finished in one cell time slot. In other words, the arbitration’s timing complexity is
in the order of O(N × K). The arbiter may become the system’s bottleneck when N or K
is large.

The arbitration scheme described here performs N-to-L × M selection in a distributed
manner using the switch fabric and all IPCs, thus eliminating the speed constraint. Another
difference between this arbitration scheme and others is that here the HOL cell is repeatedly
sent to the switch fabric to compete with others until it has successfully transmitted to all
necessary output groups that the cell is destined for. Unlike other arbitration schemes,
the scheme described here does not wait for an acknowledgment before transmitting the
cell. When a cell is routed in a switch fabric without waiting for an acknowledgment, two
situations are possible. It could be successfully routed to all necessary output groups, or only
routed to a subset of the output groups (including an empty set). The latter case is considered
a failure, and the HOL cell will retry in the next time slot. When a cell is transmitted to the
switch fabric, since it does not know if it will succeed, it must be stored in a one-cell buffer
for possible retransmission.

Now the question is how the IPC knows whether or not its HOL cell has been successfully
transmitted to all necessary output groups. In the Abacus switch, the RMs are responsible
for returning the routing results to the IPC. One possible way is to let each RM inform
the IPCs of the identification (e.g., the broadcast channel number) of the cells that have
been successfully routed. However, since a cell could be routed to multiple output groups
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(for instance, up to K output groups for a broadcast situation), one IPC may receive up to
K acknowledgments from K RMs. The complexity of returning the identification of every
successfully routed copy to all IPCs is too high to be practical for a large-scale switch.
A scheme that significantly simplifies the complexity of the acknowledgment operation is
described in the following.

The RM cannot only route cells to proper output groups, but also, based on cells’priority
levels, choose up to L × M cells that are destined for the same output group. The HOL cell
of each input port is assigned a unique priority level. After cells are routed through an RM,
they are sorted at the output links of the RM according to their priority levels from left to
right in a descending order (see Fig. 10.2). The cell that appears at the rightmost output
link has the lowest priority level among the cells that have been routed through this RM.
This lowest priority information is broadcast to all IPCs. Each IPC will then compare the
local priority level (LP) of the HOL cell with a feedback priority, say FPj, to determine if
the HOL cell has been routed through the RMj. Note that there are K feedback priorities,
FP1, . . . , FPK . If the feedback priority level (FPj) is lower than or equal to the local priority
level (LP), the IPC determines that its HOL cell has reached one of the output links of the
RMj. Otherwise, the HOL cell must have been discarded in the RMj due to loss of contention
and will be retransmitted in the next time slot. Since there are K RMs in total, there will be
K lines broadcast from K RMs to all IPCs, each carrying the lowest priority information in
its output group.

The priority assigned to the HOL cells will be dynamically changed according to some
arbitration policies, such as random, round-robin, state-dependent, or delay-dependent [5].
The random scheme randomly chooses the HOL cells of input ports for transmission; the
drawback being a large delay variation. The round-robin scheme chooses HOL cells from
input ports in a round-robin fashion by dynamically changing the scanning point from the
top to the bottom input port (e.g., S field in Fig. 10.3). The state-dependent scheme chooses
the HOL cell in the longest input queue such that input queue lengths are maintained nearly
equal, achieving the input buffers sharing effect (e.g., Q field in Fig. 10.3). The delay-
dependent scheme performs like a global FIFO, where the oldest HOL cell has the highest
priority to be transmitted to the output (e.g., R field in Fig. 10.3). Since the arbitration is
performed in a distributed manner by K RMs and in parallel by IPCs, any of the above
policies, or a combination of them, can be implemented by arbitrarily assigning a proper
priority level to the HOL cell.

At the beginning of the time slot, each IPC sends its HOL cell to the MGN. Meanwhile,
the HOL cell is temporarily stored in a one-cell sized buffer during its transmission. After
cells have traversed through the RMs, priority information, FP1 to FPK (the priority of
the right most link of each RM), is fed back to every IPC. Each IPC will then compare the
feedback priority level FPj, j = 1, 2, . . . , K , with its local priority level, LP. Three situations
can happen: (a) MPj = 1 and LP ≤ FPj (recall that the smaller the priority value, the higher
the priority level), which means the HOL cell is destined for the jth output group and has
been successfully routed through the jth RM. The MPj bit is then set to ‘0’; (b) MPj = 1
and LP > FPj, which means the HOL cell is destined for the jth output group but discarded
in the jth RM. The MPj bit remains ‘1’; (c) MPj = 0, the jth bit of the HOL cell’s multicast
pattern can be equal to ‘0’, which means the HOL cell is not destined for the jth output
group. Then, the MPj bit remains ‘0’.

After all MPj bits ( j = 1, 2, . . . , K) have been updated according to one of the above
three scenarios, a signal indicating whether the HOL cell should be retransmitted, ‘resend’,
will be asserted to ‘1’ if one or more bits in the multicast pattern remains ‘1’. The resend
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Figure 10.4 Example of modifying a multicast pattern (MP) (©1997 IEEE).

signal is initially set to ‘0’. If multicast pattern bits are all ‘0’, meaning the HOL cell has
been successfully transmitted to all the necessary output groups, the resend signal will be
disasserted. The IPC will then clear the HOL cell in the one-cell buffer and transmit the
next cell in the input buffer in the next time slot (if any).

Figure 10.4 gives an example of how a multicast pattern is modified. Let us assume at
the beginning of the mth time slot, the HOL cell is destined for three output groups: #1, #3,
#K . Therefore, the multicast pattern at the mth time slot, MPm, has three bits set to ‘1’. Let
us also assume the local priority value (LP) of the HOL cell is 5 and the feedback priority
values from #1, #2, #3, and #K are 7, 2, 3, and 5, respectively, as shown in Figure 10.4.
The result of comparing LP with FPs is ‘0110 . . . 00’, which is then logically ANDed
with the MPm and produces a new multicast pattern, ‘0010 . . . 00’, for the next time slot
(MPm+1). Since only the MPm+1

3 is set to ‘1’, the IPC determines that the HOL cell has
been successfully routed to RMs #1 and #K but discarded in RM #3 and will retransmit in
the next time slot.

10.3 IMPLEMENTATION OF INPUT PORT CONTROLLER

Figure 10.5 shows a block diagram of the IPC. For easy explanation, let us assume the
switch has 256 input ports and 256 output ports and every 16 output ports are in one group.
A major difference between this IPC and traditional ones is the addition of the multicast
contention resolution unit (MCRU), shown in a dashed box. It determines, by comparing
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Figure 10.5 Implementation of the IPC with N = 256, M = 16 (© 1997 IEEE).

K feedback priorities with the local priority of the HOL cell, whether or not the HOL cell
has been successfully routed to all necessary output groups.

Let us start from the left where the input line from the SONET/ATM network is termi-
nated. Cells with 16 bits wide are written into an input buffer. The HOL cell’s VPI/VCI is
used to extract the necessary information from a routing table. This information includes
a new VPI/VCI for unicast connections, a BCN for multicast connections, which uniquely
identifies each multicast call in the entire switch, MP for routing cells in the MGN, and the
connection priority (C). This information is then combined with a priority field to form the
routing information, as shown in Figure 10.3.

As the cell is transmitted to the MGN through a parallel-to-serial (P/S) converter, the cell
is also stored temporarily in a one-cell buffer. If the cell fails to successfully route through
the RMs, it will be retransmitted in the next cell cycle. During retransmission, it is written
back to the one-cell buffer in case it fails to route through again. The S down counter is
initially loaded with the input address and decremented by one at each cell clock. The R
down counter is initially set to all ‘1’s and decreased by one every time the HOL cell fails
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to transmit successfully. When the R-counter reaches zero, it will remain at zero until the
HOL cell has been cleared and a new cell becomes the HOL cell.

K feedback priority signals, FP1 to FPK , are converted to 16-bit wide signals by the
serial-to-parallel (S/P) converters and latched at the 16-bit registers. They are simultane-
ously compared with the HOL cell’s local priority (LP) by K comparators. Recall that the
larger the priority value, the lower the priority level is. If the value of the FPj is larger than
or equal to the local priority value (LP), the jth comparator’s output is asserted low, which
will then reset the MPj bit to zero regardless of what its value was (‘0’ or ‘1’). After the
resetting operation, if any one of the MPj bits is still ‘1’, indicating that at least one HOL
cell did not get through the RM in the current cycle, the ‘resend’ signal will be asserted high
and the HOL cell will be retransmitted in the next cell cycle with the modified multicast
pattern.

As shown in Figure 10.5, there are K sets of S/P, FP register, and comparator. As a
switch size increases, the number of output groups, K , also increases. However, if the
time permits, only one set of this hardware is required by time-division multiplexing the
operation of comparing the local priority value, LP, with K feedback priority values.

10.4 PERFORMANCE

This section discusses the performance analysis of the Abacus switch. Both simulation and
analytical results are shown to compare with each other. Simulation results are obtained
with a 95 percent confidence interval, not greater than 10 percent for the cell loss probability
or 5 percent for the maximum throughput and average cell delay.

10.4.1 Maximum Throughput

The maximum throughput of an ATM switch employing input queuing is defined by the
maximum utilization at the output port. An input-buffered switch’s HOL blocking problem
can be alleviated by speeding-up the switch fabric’s operation rate or increasing the number
of routing links with an expansion ratio L. Several other factors also affect the maximum
throughput. For instance, the larger the switch size (N) or burstiness (β), the smaller the
maximum throughput (ρmax) will be. However, the larger the group expansion ratio (L) or
group size (M) is, the larger the maximum throughput will be.

Karol et al. [6] have shown that the maximum throughput of an input-buffered ATM
switch is 58.6 percent for M = 1, L = 1, N → ∞, with random traffic. Oie et al. [7] have
obtained the maximum throughput of an input–output-buffered ATM switch for M = 1, an
arbitrary group expansion ratio or speed-up factor L, and an infinite N with random traffic.
Pattavina [8] has shown, through computer simulations, the maximum throughput of an
input–output-buffered ATM switch using the channel grouping concept for an arbitrary
group size M, L = 1, and an infinite N with random traffic. Liew and Lu [9] have shown the
maximum throughput of an asymmetric input–output-buffered switch module for arbitrary
M and L, and N → ∞ with bursty traffic.

Figure 10.6 shows that the maximum throughput is monotonically increasing with the
group size. For M = 1, the switch becomes an input-buffered switch, and its maximum
throughput ρmax is 0.586 for uniform random traffic (β = 1), and ρmax = 0.5 for completely
bursty traffic (β → ∞). For M = N , the switch becomes a completely shared memory
switch such as that proposed by Kozaki et al. [10]. Although it can achieve 100 percent
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Figure 10.6 Maximum throughput versus group size, L = 1.0.

throughput, it is impractical to implement a large-scale switch using such an architecture.
Therefore, choosing M between 1 and N is a compromise between the throughput and the
implementation complexity.

Figures 10.7 and 10.8 compare theoretical values and simulation values of the maximum
throughput with different group expansion ratios (L) for M = 1 and M = 16, respectively.
The theoretical values can be obtained from Liew and Lu’s analysis [9].

A HOL virtual queue is defined as the queue that consists of cells at the head of line of
input buffers destined for a tagged output group. For uniform random traffic, the average
number of cells E[C] in the HOL virtual queue becomes

E[C] = ρo[2(L × M) − ρo] − (L × M)(L × M − 1)

2(L × M − ρo)
+

L×M−1∑
k=1

1

1 − zk
(10.1)

where z0 = 1 and zk (k = 1, . . . , L × M − 1) are the roots of zL×M/A(z) = [p + (1 −
p)z]L×M and A(z) = e−pρo(1−z). For completely bursty traffic, E[C] becomes

E[C] =
∑L×M−1

k=0 k(L × M − k)ck + ρo

L × M − ρo
(10.2)
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Figure 10.7 Maximum throughput versus group expansion ratio with M = 1.

Figure 10.8 Maximum throughput versus group expansion ratio with M = 16.
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where

ck =
{

ρk
oc0/k! if k < L × M

ρk
oc0/[(L × M)!(L × M)k−L×M ] if k ≥ L × M

c0 = L × M − ρo∑L×M−1
k=0 (L × M − k)ρk

o/k! .

The maximum throughput of the proposed ATM switch can be obtained by considering the
total number of backlogged cells in all K HOL virtual queues to be N . This means under
a saturation condition, there is always a HOL cell at each input queue. Since it is assumed
that cells are to be uniformly distributed over all output groups, we obtain

E[C] = N/K = M. (10.3)

The maximum throughput can be obtained by equating (10.1) and (10.3) for random traffic,
and equating (10.2) and (10.3) for bursty traffic, respectively. If ρ∗

o satisfies both equations,
the maximum throughput at each input, ρmax, is related to ρ∗

o by ρmax = ρ∗
o/M.

For a given M, the maximum throughput increases with L because there are more routing
links available between input ports and output groups. However, since a larger L means
higher hardware complexity, the value of L should be selected prudently such that both
hardware complexity and the maximum throughput are acceptable. For instance, for a
group size M of 16 (for input traffic with an average burst length of 15 cells), L has to
be at least 1.25 to achieve a maximum throughput of 0.95. But for a group size M of
32 and the same input traffic characteristic, L will be at least 1.125 to achieve the same
throughput. Both analytical results and simulation results show that the impact of input
traffic’s burstiness on the maximum throughput is very small. For example, the maximum
throughput for uniform random traffic with M = 16 and L = 1.25 is 97.35 percent, and
for completely bursty traffic is 96.03 percent, only 1.32 percent difference. The discrep-
ancy between theoretical and simulation results comes from the assumption of switch size
N and β. In theoretical analysis, it is assumed that N → ∞, β → ∞, but in simula-
tion it is assumed that N = 256, β = 15. As these two numbers increase, the discrepancy
reduces.

10.4.2 Average Delay

A cell may experience two kinds of delay while traversing through theAbacus switch: input-
buffer delay and output-buffer delay. In theoretical analysis, the buffer size is assumed to
be infinite. But in simulations, it is assumed that the maximum possible size for the input
buffers and output buffers that can be sustained in computer simulations: Bi = 1024 and
Bo = 256, respectively. Here, Bi is the input buffer size and Bo is the normalized output
buffer size (i.e., the size of a physical buffer 4096 divided by M, 16). Although finite
buffers may cause cell loss, it is small enough to be neglected when evaluating average
delay.

Let us assume each input buffer receives a cell per time slot with a probability λ, and trans-
mits a cell with a probability µ. The probability µ is equal to 1.0 if there is no HOL blocking.
But, as the probability of HOL blocking increases, µ will decrease. If λ > µ, then the input
buffer will rapidly saturate, and the delay at the input buffer will be infinite. The analytical
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results for uniform random traffic can be obtained from the analysis of Chang et al. [11],

E[T ] = 1 − λ

µ − λ
, (10.4)

where λ = ρi, µ = ρi/E[C], and E[C] is a function of M, L, ρi, and β as N → ∞, which
can be obtained from (10.1) or (10.2).

Note that the input buffer’s average delay is very small when the input offered load
is less than the maximum saturation throughput. This results from small HOL blocking
probability before the saturated throughput. It also shows that the impact of the burstiness
of input traffic on the input buffer’s average delay is very small when the traffic load is
below the maximum throughput.

Figure 10.9 compares the average delay at the input and output buffers. Note that the
input buffer’s average delay is much smaller than the output buffer’s average delay at traffic
load less than the saturated throughput. For example, for an input offered load ρi of 0.8 and
an average burst length β of 15, the output buffer’s average delay To is 58.8 cell times, but
the input buffer’s average delay Ti is only 0.1 cell time.

Figure 10.10 shows simulation results of the input buffer’s average delay versus the
expanded throughput ρj for both unicast and multicast traffic. It is assumed that the number
of replicated cells is distributed geometrically with an average of c. The expanded throughput
ρj is measured at the inputs of the SSM and normalized to each output port. Note that
multicast traffic has a lower delay than unicast traffic because a multicast cell can be sent to
multiple destinations in a time slot while a unicast cell can be sent to only one destination
in a time slot. For example, assume that an input port i has 10 unicast cells and the other
input port j has a multicast cell with a fanout of 10. Input port i will take at least 10 time

Figure 10.9 Comparison of average input buffer delay and average output buffer delay.
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Figure 10.10 Average input buffer delay versus expanded throughput for unicast and multicast
traffic (simulation).

slots to transmit the 10 unicast cells while input port j can possibly transmit the multicast
cell in one time slot.

10.4.3 Cell Loss Probability

As suggested in the work of Pattavina and Bruzzi [12], there can be two buffer control
schemes for an input–output-buffered switch: the queue loss (QL) scheme and the back-
pressure (BP) scheme. In the QL scheme, cell loss can occur at both input and output
buffers. In the BP scheme, by means of backward throttling, the number of cells actually
switched to each output group is limited not only to the group expansion ratio (L × M) but
also to the current storage capability in the corresponding output buffer. For example, if the
free buffer space in the corresponding output buffer is less than L × M, only the number
of cells corresponding to the free space are transmitted, and all other HOL cells destined
for that output group remain at their respective input buffer. The Abacus switch can easily
implement the backpressure scheme by forcing the AB in Figure 10.2 to send the dummy
cells with the highest priority level, which will automatically block the input cells from
using those routing links. Furthermore, the number of blocked links can be dynamically
changed based on the output buffer’s congestion situation.

Here, we only consider the QL scheme (cell loss at both input and output buffers). In
the Abacus switch, cell loss can occur at input and output buffers, but not in the MGN.
Figure 10.11 shows input buffer overflow probabilities with different average burst lengths,
β. For uniform random traffic, an input buffer with a capacity of a few cells is sufficient to
maintain the buffer overflow probability to be less than 10−6. As the average burst length
increases, so does the cell loss probability. For an average burst length β of 15, the required
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Figure 10.11 Input buffer overflow probability versus input buffer size (simulation).

Figure 10.12 Output buffer overflow probability versus output buffer size (simulation).
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input buffer size can be a few tens of cells for the buffer overflow probability of 10−6. By
extrapolating the simulation result, the input buffer size is about 100 cells for 10−10 cell
loss rate.

Figure 10.12 shows the output buffer overflow probabilities with different average burst
lengths. Here, Bo is the normalized buffer size for each output. It is shown that the
required output buffer size is much larger than the input buffer size for the same cell loss
probability.

10.5 ATM ROUTING AND CONCENTRATION (ARC) CHIP

An ASIC (Application Specific Integrated Circuit) has been implemented based on the
Abacus switch architecture. Figure 10.13 shows theARC chip’s block diagram. Each block’s
function and design are explained briefly in the following sections. Details can be found
in the work of Chao and Uzun [13]. The ARC chip contains 32 × 32 SWEs, which are
partioned into eight SWE arrays, each with 32 × 4 SWEs. A set of input data signals,
w[0 : 31], comes from the IPCs. Another set of input data signals, n[0 : 31], either comes
from the output, s[0 : 31], of the chips on the above row, or is tied to high for the chips on
the first row (in the multicast case). A set of the output signals, s[0 : 31], either go to the
north input of the chips one row below or go to the output buffer.

x0 signal is broadcast to all SWEs to initialize each SWE to a cross state, where the
west input passes to the east and the north input passes to the south. x1 signal speci-
fies the address bit(s) used for routing cells, while x2 signal specifies the priority field.
Other x output signals propagate along with cells to the adjacent chips on the east or
south side.

m[0 : 1] signals are used to configure the chip into four different group sizes as shown in
Table 10.1: (1) eight groups, each with four output links; (2) four groups, each with eight
output links; (3) two groups, each with 16 output links; and (4) one group with 32 output
links. The m[2] signal is used to configure the chip to either unicast or multicast application.
For the unicast case, m[2] is set to 0, while for the multicast case, m[2] is set to 1.

As shown in Figure 10.14, the SWEs are arranged in a cross-bar structure, where signals
only communicate between adjacent SWEs, easing the synchronization problem. ATM cells
are propagated in the SWE array similar to a wave propagating diagonally toward the bottom
right corner. The x1 and x2 signals are applied from the top left of the SWE array, and each

Figure 10.13 Block diagram of the ARC chip.
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TABLE 10.1 Truth Table for Different Operation
Modes

m1 m0 Operation

0 0 8 groups with 4 links per group
0 1 4 groups with 8 links per group
1 0 2 groups with 16 links per group
1 1 1 group with 32 links per group

m2 = 1 multicast, m2 = 0 unicast.

SWE distributes the x1 and x2 signals to its east and south neighbors. This requires the same
phase to the signal arriving at each SWE. x1 and x2 signals are passed to the neighbor SWEs
(east and south) after one clock cycle delay, as are data signals (w and n). The x0 signal is
broadcast to all SWEs (not shown in Fig. 10.14) to precharge an internal node in the SWE
in every cell cycle. The x1e output signal is used to identify the address bit position of the
cells in the first SWE array of the next adjacent chip.

The timing diagram of the SWE input signals and its two possible states are shown in
Figure 10.15. Two bit-aligned cells, one from the west and one from the north, are applied
to the SWE along with the dx1 and dx2 signals, which determine the address and priority
fields of the input cells. The SWE has two states: cross and toggle. Initially, the SWE is
initialized to a cross state by the dx0 signal, that is, cells from the north side are routed to the
south side, and cells from the west side are routed to the east side. When the address of the
cell from the west (dwa) is matched with the address of the cell from the north (dna), and
when the west’s priority level (dwp) is higher than the north’s (dnp), the SWEs are toggled.
The cell from the west side is then routed to the south side, and the cell from the north is
routed to the east. Otherwise, the SWE remains at the cross state.

Figure 10.14 32 × 4 SWE array.
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Figure 10.15 Two states of the switch element.

The 32 × 32 ARC chip has been designed and fabricated using 0.8 µm CMOS techno-
logy with a die size of 6.6 × 6.6 mm. Note that this chip is pad limited. The chip has been
tested successfully up to 240 MHz and its characteristics are summarized in Table 10.2. Its
photograph is shown in Figure 10.16.

TABLE 10.2 Chip Summary

Process technology 0.8-µm CMOS, triple metal
Number of switching elements 32 × 32
Configurable group size 4, 8, 16, or 32 output links
Pin count 145
Package Ceramic PGA
Number of transistors 81,000
Die size 6.6 × 6.6 mm2

Clock signals Pseudo ECL
Interface signals TTL/CMOS inputs, CMOS outputs
Maximum clock speed 240 MHz
Worst-case power dissipation 2.8 W at 240 MHz
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Figure 10.16 Photograph of the ARC chip (©1997 IEEE).

10.6 ENHANCED ABACUS SWITCH

This section discusses three approaches of implementing the MGN in Figure 10.1 to scale-
up the Abacus switch to a larger-size. As described in Section 10.2, the time for routing
cells through an RM and feeding back the lowest priority information from the RM to all
IPCs must be less than one cell slot time. The feedback information is used to determine
whether or not the cell has been successfully routed to the destined output group(s). If not,
the cell will continue retrying until it has reached all the desired output groups. Since each
SWE in an RM introduces a 1-bit delay as the signal passes it in either direction, the number
of SWEs between the uppermost link and the rightmost link of an RM should be less than
the number of bits in a cell. In other words, N + L × M − 1 < 424 (see Section 10.2).
For example, if we choose M = 16, L = 1.25, the equation becomes N + 1.25 × 16 − 1 <

424. The maximum value of N is 405, which is not large enough for a large-capacity
switch.

10.6.1 Memoryless Multi-Stage Concentration Network

One way to scale up the Abacus switch is to reduce the time spent on traversing cells from
the uppermost link to the rightmost link in a RM (see Fig. 10.2). Let us call this time the
‘routing delay’. In a single-stageAbacus switch, the routing delay is N + L × M − 1, which
limits the switch size because it grows with N .
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To reduce the routing delay, the number of SWEs that a cell traverses in a RM must be
minimized. If we divide a MGN into many small MGNs, the routing delay can be reduced.
Figure 10.17 shows a two-stage memoryless multi-stage concentration network (MMCN)
architecture that can implement a large-capacity Abacus switch. It consists of N IPCs,
J (=N/n) MGNs, and K (=N/M) concentration modules (CMs). Each MGN has K RMs,
and each RM has n input links and L × M output links. Each CM has J × (L × M) input
links and L × M output links.

After cells are routed through the RMs, they need to be further concentrated at the
CMs. Since cells that are routed to the CM always have correct output group addresses, we
do not need to perform a routing function in the CM. In the CM, only the concentration
function is performed by using the priority field in the routing information. The structure
and implementation of the RM and the CM are identical, except the functions performed
are slightly different.

Recall that each group of M output ports requires L × M routing links to achieve a high
delay/throughput performance. The output expansion ratio of the RM must be equal to or
greater than that of the CM. If not, the multicast contention resolution algorithm does not
work properly. For example, let us assume that N = 1024, M = 16, and n = 128. Consider
the case that there are 16 links between a RM and a CM, while there are 20 links between

Figure 10.17 Two-stage MMCN.
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Figure 10.18 Routing delay in a two-stage MMCN.

a CM and a SSM. If all 128 cells of MGN #1 are destined for output group #1 and no cells
from other MGNs are destined for output group #1, the feedback priority of CM #1 will be
the priority of the address broadcaster, which has the lowest priority level. Then, all 128
cells destined for output group #1 are cleared from the IPCs of MGN #1, even though only
20 cells can be accepted in the SSM. The other 108 cells will be lost. Therefore, the output
expansion ratio of the RM must be equal to or greater than that of the CM.

Let us define n as the module size. The number of input links of a RM is n, and the number
of input links of the CM is J × (L × M). By letting n = J × M, the number of input links
of the CM is on the same order with the number of input links of the RM because we can
engineer M such that L is close to one.

In the MMCN, the feedback priorities (FPs) are extracted from the CMs and broadcast to
all IPCs. To maintain the cell sequence integrity from the same connection, the cell behind
the HOL cell at each IPC cannot be sent to the switch fabric until the HOL cell has been
successfully transmitted to the desired output port(s). In other words, the routing delay must
be less than one cell slot. This requirement limits the MMCN to a certain size.

Cells that have arrived at a CM must carry the address of the associated output group
(either valid cells or dummy cells from the RM’s address broadcaster). As a result, there
is no need for using the AB in the CM to generate dummy cells to carry the address
of the output group. Rather, the inputs that are reserved for the AB are substituted by the
routing links of MGN #1. Thus, the routing delay of the two-stage MMCN is n + (J − 1) ×
(L × M) + L × M − 1, as shown in Figure 10.18, which should be less than 424. Therefore,
we have the following equations by replacing J with n/M: n + [(n/M) − 1] × (L × M) +
L × M − 1 < 424. It can be simplified to n < [425/(1 + L)]. Thus, N = J × n = n2/M <

{4252/[M × (1 + L)2]}. Table 10.3 shows the minimum value of L for a given M to get a
maximum throughput of 99 percent with random uniform traffic.

TABLE 10.3 Minimum Value of L for a Given M

M 1 2 4 8 16 32

L 4 3 2.25 1.75 1.25 1.125
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Clearly, the smaller the group size M, the larger the switch size N . The largest Abacus
switch can be obtained by letting M = 1. But in this case (M = 1), the group expansion
ratio (L) must be equal to or greater than four to have a satisfactory delay/throughput
performance. Increasing the group size M reduces the maximum switch size N , but also
reduces the number of feedback links (N2/M) and the number of SWEs (LN2 + L2Nn).
Therefore, by engineering the group size properly, we can build a practical large-capacity
Abacus switch. For example, if we choose M = 16 and L = 1.25, then the maximum
module size n is 188, and the maximum switch size N is 2209. With the advanced CMOS
technology (e.g., 0.25 µm), it is feasible to operate at the OC-12 rate (i.e., 622 Mbit/s).
Thus, the MMCN is capable of providing more than 1 Tbit/s of capacity.

10.6.2 Buffered Multi-Stage Concentration Network

Figure 10.19 shows a two-stage buffered multi-stage concentration network (BMCN). As
discussed in the previous section, the MMCN needs to have the feedback priority lines
connected to all IPCs, which increases the interconnection complexity. This can be resolved
by keeping RMs and CMs autonomous, where the feedback priorities (FPs) are extracted

Figure 10.19 Two-stage BMCN.
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from the RMs rather than from the CMs. However, buffers are required in the CMs since
cells that successfully pass through the RMs and are cleared from input buffers may not
pass through the CMs.

Figure 10.20 shows three ways of building the CM. Figure 10.20a uses a shared-
memory structure similar to the MainStreetXpress 36190 core services switch [14] and
the concentrator-based growable switch architecture [15]. Its size is limited due to the
memory speed constraint.

Figure 10.20b shows another way to implement the CM by using a two-dimensional
SWE array and input buffers. One potential problem of having buffers at the input links of
the CM is cell out-of-sequence. This is because after cells that belong to the same virtual
connection are routed through a RM, they may be queued at different input buffers. Since
the queue lengths in the buffers can be different, cells that arrive at the buffer with shorter
queue lengths will be served earlier by the CM, resulting in cell out-of-sequence.

This out-of-sequence problem can be eliminated by time-division multiplexing cells
from a RM (M cells), storing them in an intermediate stage controller (ISC), and sending
them sequentially to M one-cell buffers, as shown in Figure 10.20c. The ISC has an internal
FIFO buffer and logic circuits that handle feedback priorities as in the Abacus switch. This
achieves a global FIFO effect and thus maintains the cells’ sequence. Each ISC can receive
up to M cells and transmit up to M cells during each cell time slot.

The key to maintaining cell sequence is to assign priority properly. At each ISC, cells
are dispatched to the one-cell buffers whenever the one-cell buffers become empty and
there are cells in the ISC. When a cell is dispatched to the one-cell buffer, the ISC assigns
a priority value to the cell. The priority field is divided into two parts, port priority and
sequence priority. The port priority field is more significant than the sequence priority.
The port priority field has �log2 J� bits for the J ISCs in a CM, where �x� denotes the
smallest integer that is equal to or greater than x. The sequence priority field must have at
least �log2 JM� bits to ensure the cell sequence integrity to accommodate L × M priority
levels, which will be explained in an example later. The port priority is updated in every
arbitration cycle (i.e., in each cell slot time) in a round-robin fashion. The sequence priority
is increased by one whenever a cell is dispatched from the ISC to a one-cell buffer. When
the port priority has the highest priority level, the sequence priority is reset to zero at the
beginning of the next arbitration cycle (assuming the smaller the priority value, the higher
the priority level). This is because all cells in the one-cell buffers will be cleared at the
current cycle. Using this dispatch algorithm, cells in the ISC will be delivered to the output
port in sequence. The reason that the sequence priority needs to have L × M levels is to

Figure 10.20 Three ways of building the CM.
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Figure 10.21 Example of priority assignment in the CM.

accommodate the maximum number of cells that can be transmitted from an ISC between
two reset operations for the sequence priority.

Figure 10.21 shows an example of a cell’s priority assignment scheme for J = 3 and
M = 4. Port priority (p) and sequence priority (q) are represented by two numbers in [p, q],
where p = 0, 1, 2, and q = 0, 1, 2, . . . , 11. During each time slot, each ISC can receive up to
four cells and transmit up to four cells. Let us consider the following case. ISC #1 receives
four cells in every time slot, ISC #3 receives one cell in every time slot, and ISC #2 receives
no cells.

The port priority is changed in every time slot in a round-robin fashion. In time slot T ,
ISC #1 has the highest port priority level, and ISC #3 has the lowest port priority level. In
time slot (T + 1), ISC #2 has the highest port priority level, and ISC #1 has the lowest port
priority level, and so on. ISC #3 has a higher port priority level than ISC #1 in time slots
(T + 1) and (T + 2).

In time slot T , all four cells in the one-cell buffers of ISC #1 pass through the CM because
they have the highest priority levels. In time slot (T + 1), ISC #3 transmits two cells (a and
b) and ISC #1 transmits two cells (A and B). In time slot (T + 2), ISC #3 transmits one cell
(c), while ISC #1 transmits three cells (C, D, and E). In time slot (T + 3), ISC #1 has the
highest port priority (‘0’) and is able to transmit all its cells (F, G, H, and I). Once they are
cleared from the one-cell buffers, ISC #1 resets its sequence priority to zero.

10.6.3 Resequencing Cells

As discussed before, the routing delay in the Abacus switch must be less than 424 bit times.
If the routing delay is greater than 424, there are two possibilities. First, if a cell is held up
in the input buffer longer than a cell slot time, the throughput of the switch fabric will be
degraded. Second, if a cell next to the HOL cell is sent to the MGN before knowing if the
HOL cell has been successfully transmitted to the desired output switch module(s), it may
be ahead of the HOL cell that did not pass through the MGN. This cell out-of-sequence
problem can be resolved with a resequencing buffer (RSQB) at the output port of the MGN.

For a switch size N of 1024, output group size M of 16, and group expansion ratio
L of 1.25, the maximum routing delay of the single stage Abacus switch is 1043 (i.e.,
N + L × M − 1 as described previously). Therefore, an arbitration cycle is at least three
cell time slots. If up to three cells are allowed to transmit during each arbitration cycle, the
IPC must have three one-cell buffers arranged in parallel.
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Figure 10.22 Example of cell out-of-sequence with arbitration cycle of three cell slots.

Figure 10.22 illustrates an example of the maximum degree of out-of-sequence. Assume
cells A to J are stored in the same input buffer in sequence. In time slot 1, cell A is sent to the
switch fabric. It takes three time slots to know if cell A has passed through the switch fabric
successfully. In time slot 2, cell B is sent to the switch fabric, and in time slot 3, cell C is
sent to the switch fabric. Before the end of time slot 3, the IPC knows that cell A has failed
to pass the switch fabric, so cell A will be transmitted again in time slot 4. If cell A passes
through the switch fabric successfully on the fourth try, up to six cells (cells B to G) can be
ahead of the cell A. The cell arriving sequence in the RSQB is shown in Figure 10.22.

For this scheme to be practical, the size of the maximum degree of cell out-of-sequence
and the size of the RSQB should be bounded. Let us consider the worst case. If all HOL
cells of N input ports are destined for the same output group and the tagged cell has the
lowest port priority in time slot T , L × M highest priority cells will be routed in time slot
T . In time slot (T + 1), the priority level of the tagged cell will be incremented by one so
that there can be at most (N − L × M − 1) cells whose priority levels are greater than that
of the tagged cell. In time slot (T + 2), there can be at most (N − 2 × L × M − 1) cells
whose priority levels are greater than that of the tagged cell, and so on.

The maximum degree of out-of-sequence can be obtained from the following. An arbi-
tration cycle is equal to or greater than r = �N + L × M − 1/424� cell time slots. A tagged
cell succeeds in at most s = �N/L × M� tries. Therefore, in the worst case, the HOL cell
passes through the switch fabric successfully in (r × s) time slots. Denote the maximum
degree of out-of-sequence to be t; t = r × s.

One way to implement the resequencing is to time stamp each cell with a value equal
to the real time plus the maximum degree of cell out-of-sequence (t), when it is sent to the
switch fabric. Let us call the time stamp the ‘due time of the cell’. Cells at the RSQBs are
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TABLE 10.4 Maximum Degree of Cell
Out-of-Sequence (t)

N M L r s t

1024 16 1.25 3 52 156
8192 16 1.25 20 410 8200

moved to the SSM when their due times are equal to the real time. This maintains the cell
transmission sequence.

The drawbacks of this scheme are high implementation scomplexity of the RSQB and
large cell transfer delay. Since a cell must wait in the RSQB until the real time reaches
the due time of the cell, every cell experiences at least t cell slot delay even if there is no
contention. Table 10.4 shows the maximum degree of cell out-of-sequence for switch sizes
of 1024 and 8192. For switch size 1024, the maximum degree of cell out-of-sequence is
156 cell slots, which corresponds to 441 µsec for the OC-3 line rate (i.e., 156 × 2.83 µsec).

10.6.4 Complexity Comparison

This section compares the complexity of the above three approaches for building a large-
capacity Abacus switch and summarizes the results in Table 10.5. Here, the switch element
in the RMs and CMs is a 2 × 2 crosspoint device. The number of inter-stage links is the
number of links between the RMs and the CMs. The number of buffers is the number of
ISCs. For the BMCN, the CMs have ISCs and one-cell buffers (Fig. 10.20c). The second
and third parts of Table 10.5 give some numerical values of a 160 Gbit/s Abacus switch.

TABLE 10.5 Complexity Comparison of Three Approaches for a 160 Gbit/s Abacus Switch

MMCN BMCN Resequencing

Number of switch elements LN2 + L2Nn N2 + Nn LN2

Number of inter-stage links JLN JN 0
Number of internal buffers 0 JK 0
Number of MP bits K K K
Out-of-sequence delay 0 0 �(N + LM − 1)/424� × �N/(LM)�
Routing delay in bits n + Ln − 1 n + LM − 1 N + LM − 1

Switch size N 1024 1024 1024
Group size M 16 16 16
Output exp. ratio L 1.25 1.25 1.25
Module size n 128 128 128

Number of switch elements 1,515,520 1,179,648 1,310,720
Number of inter-stage links 10,240 8192 0
Number of internal buffers 0 512 0
Number of MP bits 64 64 64
Out-of-sequence delay 0 0 156
Routing delay in bits 287 147 1043
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Here, it is assumed that the switch size N is 1024, the input line speed is 155.52 Mbit/s,
the group size M is 16, the group expansion ratio L is 1.25, and the module size n is 128.

With respect to the MMCN, there are no internal buffers and no out-of-sequence cells.
Its routing delay is less than 424 bit times. But the number of SWEs and inter-stage links
is the highest among the three approaches.

For the BMCN, the routing delay is no longer a concern for a large-capacity Abacus
switch. Its number of SWEs and inter-stage links is smaller than that of the MMCN. How-
ever, it may not be cost-effective when it is required to implement buffer management and
cell scheduling in the intermediate-stage buffers to meet QoS requirements.

The last approach of resequencing out-of-sequence cells has no inter-stage links nor
internal buffers. It requires a resequencing buffer at each output port. For a switch capacity
of 160 Gbit/s, the delay caused by resequencing cells is at least 156 cell slot times.

10.7 ABACUS SWITCH FOR PACKET SWITCHING

The Abacus switch can also handle variable-length packets. To reserve cell1 sequence in a
packet, two cell scheduling schemes are used at the input buffers. The packet interleaving
scheme transfers all cells in a packet consecutively, while the cell interleaving scheme
transfers cells from different inputs and reassembles them at the output.

10.7.1 Packet Interleaving

A packet switch using the packet interleaving technique is shown in Figure 10.23. The
switch consists of a memoryless nonblocking MGN, IPCs, and OPCs. Arriving cells are
stored in an input buffer until the last cell of the packet arrives. When the last cell arrives,
the packet is then eligible for transmission to output port(s).

In the packet interleaving scheme, all cells belonging to the same packet are transferred
consecutively. That is, if the first cell in the packet wins the output port contention for a
destination among the contending input ports, all the following cells of the packet will be
transferred consecutively to the destination.

A packet interleaving switch can be easily implemented by the Abacus switch. Only the
first cells of head-of-line (HOL) packets can contend for output ports. The contention among
the first cells of HOL packets can be resolved by properly assigning priority fields to them.
The priority field of a cell has (1 + log2 N) bits. Among them, the log2 N-bit field is used
to achieve fair contention by dynamically changing its value as in the Abacus switch. Prior
to the contention resolution, the most-significant-bit (MSB) of the priority field is set to 1
(low priority). As soon as the first cell of an HOL packet wins the contention (known from
the feedback priorities), the MSB of the priority field of all the following cells in the same
packet is asserted to 0 (high priority). As soon as the last cell of the packet is successfully
sent to the output, the MSB is set to 1 for the next packet. As a result, it is ensured that cells
belonging to the same packet are transferred consecutively.

Figure 10.24 shows the average packet delay versus offered load for a packet switch
with packet interleaving. In the simulations, it is assumed that the traffic source is an ON–
OFF model. The packet size is assumed to have a truncated geometric distribution with an

1The cell discussed in this section is just a fixed-length segment of a packet and does not have to be 53 bytes like
an ATM cell.
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Figure 10.23 Packet switch with packet interleaving.

average packet size of 10 cells and the maximum packet size of 32 cells (to accommodate the
maximum Ethernet frame size). The packet delay through the switch is defined as follows.
When the last cell of a packet arrives at an input buffer, the packet is time-stamped with an
arrival time. When the last cell of a packet leaves the output buffer, the packet is time-stamped

Figure 10.24 Delay performance of a packet switch with packet interleaving.
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with a departure time. The difference between the arrival time and the departure time is
defined as the packet delay. When there is no internal speedup (S = 1) in the switch fabric,
the delay performance of the packet interleaving switch is very poor, mainly due to the HOL
blocking. The delay/throughput performance is improved by increasing the speedup factor
S (e.g., S = 2). Note that the input buffer’s average delay is much smaller than the output
buffer’s average delay. With an internal speedup of two, its output buffer’s average delay
dominates the total average delay and is very close to that of the output-buffered switch.

10.7.2 Cell Interleaving

A packet switch using a cell interleaving technique is shown in Figure 10.25. Arriving cells
are stored in the input buffer until the last cell of a packet arrives. Once the last cell of a
packet arrives, cells are transferred in the same way as in an ATM switch. That is, cells
from different input ports can be interleaved with each other as they arrive at the output
port. Cells have to carry input port numbers so that output ports can distinguish them from
different packets. Therefore, each output port has N reassembly buffers, each corresponding
to each input port. When the last cell of a packet arrives at the reassembly buffer, all cells
belonging to the packet are moved to the output buffer for transmission to the output link.
In real implementation, only pointers are moved, not the cells. This architecture is similar
to the one in [16] in the sense that they both use reassembly buffers at the outputs, but it is
more scalable than the one in [16].

The operation speed of the Abacus switch fabric is limited to several hundred Mbit/s
with state-of-the-art CMOS technology. To accommodate the line rate of a few Gbit/s (e.g.,
Gigabit Ethernet and OC-48), we can either use the bit-slice technique or the one shown in
Figure 10.25, where the high-speed cell stream is distributed up to m one-cell buffers at each
input port. The way of dispatching cells from the IPC to the m one-cell buffers is identical

Figure 10.25 Packet switch with cell interleaving.
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Figure 10.26 Delay performance of a packet switch with cell interleaving.

to dispatching cells from the ISC to the M one-cell buffers in Figure 10.20c. The advantage
of using the technique in Figure 10.25 over the bit-slice technique is its smaller overhead
bandwidth, since the latter shrinks the cell duration while keeping the same overhead for
each cell.

Figure 10.26 shows the average packet delay versus offered load for a packet switch with
cell interleaving. When there is no internal speedup (S = 1), the delay performance is poor.
With an internal speedup S of 2, the delay performance is close to that of an output-buffered
packet switch. By comparing the delay performance between Figure 10.24 and Figure 10.26,
we can see that the average delay performance is comparable. However, we believe that the
delay variation of cell interleaving will be smaller than that of packet interleaving because
of its finer granularity in switching.
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