HIGH PERFORMANCE SWITCHES AND ROUTERS

H. JONATHAN CHAO AND BIN LIU
HIGH PERFORMANCE SWITCHES AND ROUTERS

H. JONATHAN CHAO and BIN LIU
HIGH PERFORMANCE
SWITCHES AND ROUTERS
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Copyright © 2007 by John Wiley & Sons, Inc., All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Chao, H. Jonathan, 1955-
High performance switches and routers / by H. Jonathan Chao, Bin Liu.
p. cm.
ISBN-10: 0-470-05367-4
1. Asynchronous transfer mode. 2. Routers (Computer networks) 3. Computer network protocols. 4. Packet switching (Data transmission)
I. Liu, Bin. II. Title.
TK5105.35.C454 2007
621.382'16--dc22 2006026971

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1
CONTENTS

PREFACE xv
ACKNOWLEDGMENTS xvii
1 INTRODUCTION 1
 1.1 Architecture of the Internet: Present and Future / 2
 1.1.1 The Present / 2
 1.1.2 The Future / 4
 1.2 Router Architectures / 5
 1.3 Commercial Core Router Examples / 9
 1.3.1 T640 TX-Matrix / 9
 1.3.2 Carrier Routing System (CRS-1) / 11
 1.4 Design of Core Routers / 13
 1.5 IP Network Management / 16
 1.5.1 Network Management System Functionalities / 16
 1.5.2 NMS Architecture / 17
 1.5.3 Element Management System / 18
 1.6 Outline of the Book / 19

2 IP ADDRESS LOOKUP 25
 2.1 Overview / 25
 2.2 Trie-Based Algorithms / 29
 2.2.1 Binary Trie / 29
 2.2.2 Path-Compressed Trie / 31
CONTENTS

2.2.3 Multi-Bit Trie / 33
2.2.4 Level Compression Trie / 35
2.2.5 Lulea Algorithm / 37
2.2.6 Tree Bitmap Algorithm / 42
2.2.7 Tree-Based Pipelined Search / 45
2.2.8 Binary Search on Prefix Lengths / 47
2.2.9 Binary Search on Prefix Range / 48
2.3 Hardware-Based Schemes / 51
 2.3.1 DIR-24-8-BASIC Scheme / 51
 2.3.2 DIR-Based Scheme with Bitmap Compression (BC-16-16) / 53
 2.3.3 Ternary CAM for Route Lookup / 57
 2.3.4 Two Algorithms for Reducing TCAM Entries / 58
 2.3.5 Reducing TCAM Power – CoolCAMs / 60
 2.3.6 TCAM-Based Distributed Parallel Lookup / 64
2.4 IPv6 Lookup / 67
 2.4.1 Characteristics of IPv6 Lookup / 67
 2.4.2 A Folded Method for Saving TCAM Storage / 67
 2.4.3 IPv6 Lookup via Variable-Stride Path and Bitmap Compression / 69
2.5 Comparison / 73

3 PACKET CLASSIFICATION

3.1 Introduction / 77
3.2 Trie-Based Classifications / 81
 3.2.1 Hierarchical Tries / 81
 3.2.2 Set-Pruning Trie / 82
 3.2.3 Grid of Tries / 83
 3.2.4 Extending Two-Dimensional Schemes / 84
 3.2.5 Field-Level Trie Classification (FLTC) / 85
3.3 Geometric Algorithms / 90
 3.3.1 Background / 90
 3.3.2 Cross-Producing Scheme / 91
 3.3.3 Bitmap-Intersection / 92
 3.3.4 Parallel Packet Classification (P²C) / 93
 3.3.5 Area-Based Quadtree / 95
 3.3.6 Hierarchical Intelligent Cuttings / 97
 3.3.7 HyperCuts / 98
3.4 Heuristic Algorithms / 103
 3.4.1 Recursive Flow Classification / 103
 3.4.2 Tuple Space Search / 107
3.5 TCAM-Based Algorithms / 108
 3.5.1 Range Matching in TCAM-Based Packet Classification / 108
 3.5.2 Range Mapping in TCAMs / 110

4 TRAFFIC MANAGEMENT / 114
 4.1 Quality of Service / 114
 4.1.1 QoS Parameters / 115
 4.1.2 Traffic Parameters / 116
 4.2 Integrated Services / 117
 4.2.1 Integrated Service Classes / 117
 4.2.2 IntServ Architecture / 117
 4.2.3 Resource ReSerVation Protocol (RSVP) / 119
 4.3 Differentiated Services / 121
 4.3.1 Service Level Agreement / 122
 4.3.2 Traffic Conditioning Agreement / 123
 4.3.3 Differentiated Services Network Architecture / 123
 4.3.4 Network Boundary Traffic Classification and Conditioning / 124
 4.3.5 Per Hop Behavior (PHB) / 126
 4.3.6 Differentiated Services Field / 127
 4.3.7 PHB Implementation with Packet Schedulers / 128
 4.4 Traffic Policing and Shaping / 129
 4.4.1 Location of Policing and Shaping Functions / 130
 4.4.2 ATM’s Leaky Bucket / 131
 4.4.3 IP’s Token Bucket / 133
 4.4.4 Traffic Policing / 134
 4.4.5 Traffic Shaping / 135
 4.5 Packet Scheduling / 136
 4.5.1 Max-Min Scheduling / 136
 4.5.2 Round-Robin Service / 138
 4.5.3 Weighted Round-Robin Service / 139
 4.5.4 Deficit Round-Robin Service / 140
 4.5.5 Generalized Processor Sharing (GPS) / 141
 4.5.6 Weighted Fair Queuing (WFQ) / 146
 4.5.7 Virtual Clock / 150
 4.5.8 Self-Clocked Fair Queuing / 153
 4.5.9 Worst-Case Fair Weighted Fair Queuing (WF²Q) / 155
 4.5.10 WF²Q+ / 158
 4.5.11 Comparison / 159
 4.5.12 Priorities Sorting Using a Sequencer / 160
CONTENTS

4.6 Buffer Management / 163
 4.6.1 Tail Drop / 163
 4.6.2 Drop on Full / 164
 4.6.3 Random Early Detection (RED) / 164
 4.6.4 Differential Dropping: RIO / 167
 4.6.5 Fair Random Early Detection (FRED) / 168
 4.6.6 Stabilized Random Early Detection (SRED) / 170
 4.6.7 Longest Queue Drop (LQD) / 172

5 BASICS OF PACKET SWITCHING 176
 5.1 Fundamental Switching Concept / 177
 5.2 Switch Fabric Classification / 181
 5.2.1 Time-Division Switching / 181
 5.2.2 Space-Division Switching / 183
 5.3 Buffering Strategy in Switching Fabrics / 187
 5.3.1 Shared-Memory Queuing / 188
 5.3.2 Output Queuing (OQ) / 188
 5.3.3 Input Queuing / 189
 5.3.4 Virtual Output Queuing (VOQ) / 189
 5.3.5 Combined Input and Output Queuing / 190
 5.3.6 Crosspoint Queuing / 191
 5.4 Multiplane Switching and Multistage Switching / 191
 5.5 Performance of Basic Switches / 195
 5.5.1 Traffic Model / 196
 5.5.2 Input-Buffered Switches / 197
 5.5.3 Output-Buffered Switches / 199
 5.5.4 Completely Shared-Buffered Switches / 201

6 SHARED-MEMORY SWITCHES 207
 6.1 Linked List Approach / 208
 6.2 Content Addressable Memory Approach / 213
 6.3 Space-Time-Space Approach / 215
 6.4 Scaling the Shared-Memory Switches / 217
 6.4.1 Washington University Gigabit Switch / 217
 6.4.2 Concentrator-Based Growable Switch Architecture / 218
 6.4.3 Parallel Shared-Memory Switches / 218
 6.5 Multicast Shared-Memory Switches / 220
 6.5.1 Shared-Memory Switch with a Multicast Logical Queue / 220
 6.5.2 Shared-Memory Switch with Cell Copy / 220
 6.5.3 Shared-Memory Switch with Address Copy / 222
7 INPUT-BUFFERED SWITCHES 225

7.1 Scheduling in VOQ-Based Switches 226

7.2 Maximum Matching 229
 7.2.1 Maximum Weight Matching 229
 7.2.2 Approximate MWM 229
 7.2.3 Maximum Size Matching 230

7.3 Maximal Matching 231
 7.3.1 Parallel Iterative Matching (PIM) 232
 7.3.2 Iterative Round-Robin Matching (iRRM) 233
 7.3.3 Iterative Round-Robin with SLIP (iSLIP) 234
 7.3.4 FIRM 241
 7.3.5 Dual Round-Robin Matching (DRRM) 241
 7.3.6 Pipelined Maximal Matching 245
 7.3.7 Exhaustive Dual Round-Robin Matching (EDRRM) 248

7.4 Randomized Matching Algorithms 249
 7.4.1 Randomized Algorithm with Memory 250
 7.4.2 A Derandomized Algorithm with Memory 250
 7.4.3 Variant Randomize Matching Algorithms 251
 7.4.4 Polling Based Matching Algorithms 254
 7.4.5 Simulated Performance 258

7.5 Frame-based Matching 262
 7.5.1 Reducing the Reconfiguration Frequency 263
 7.5.2 Fixed Size Synchronous Frame-Based Matching 267
 7.5.3 Asynchronous Variable-Size Frame-Based Matching 270

7.6 Stable Matching with Speedup 273
 7.6.1 Output-Queuing Emulation with Speedup of 4 274
 7.6.2 Output-Queuing Emulation with Speedup of 2 275
 7.6.3 Lowest Output Occupancy Cell First (LOOFA) 278

8 BANYAN-BASED SWITCHES 284

8.1 Banyan Networks 284

8.2 Batcher-Sorting Network 287

8.3 Output Contention Resolution Algorithms 288
 8.3.1 Three-Phase Implementation 288
 8.3.2 Ring Reservation 288

8.4 The Sunshine Switch 292

8.5 Deflection Routing 294
 8.5.1 Tandem Banyan Switch 294
 8.5.2 Shuffle-Exchange Network with Deflection Routing 296
 8.5.3 Dual Shuffle-Exchange Network with Error-Correcting Routing 297
11.2 Combined Input and Crosspoint Buffered Switches with VOQ / 370
 11.2.1 CIXB with One-Cell Crosspoint Buffers (CIXB-1) / 371
 11.2.2 Throughput and Delay Performance / 371
 11.2.3 Non-Negligible Round-Trip Times in CIXB-k / 376
11.3 OCF_OCF: Oldest Cell First Scheduling / 376
11.4 LQF_RR: Longest Queue First and Round-Robin Scheduling in CIXB-1 / 378
11.5 MCBF: Most Critical Buffer First Scheduling / 379

12 CLOS-NETWORK SWITCHES 382
 12.1 Routing Property of Clos Network Switches / 383
 12.2 Looping Algorithm / 387
 12.3 m-Matching Algorithm / 388
 12.4 Euler Partition Algorithm / 388
 12.5 Karol’s Algorithm / 389
 12.6 Frame-Based Matching Algorithm for Clos Network (f-MAC) / 391
 12.7 Concurrent Matching Algorithm for Clos Network (c-MAC) / 392
 12.8 Dual-Level Matching Algorithm for Clos Network (d-MAC) / 395
 12.9 The ATLANTA Switch / 398
 12.10 Concurrent Round-Robin Dispatching (CRRD) Scheme / 400
 12.11 The Path Switch / 404
 12.11.1 Homogeneous Capacity and Route Assignment / 406
 12.11.2 Heterogeneous Capacity Assignment / 408

13 MULTI-PLANE MULTI-STAGE BUFFERED SWITCH 413
 13.1 TrueWay Switch Architecture / 414
 13.1.1 Stages of the Switch / 415
 13.2 Packet Scheduling / 417
 13.2.1 Partial Packet Interleaving (PPI) / 419
 13.2.2 Dynamic Packet Interleaving (DPI) / 419
 13.2.3 Head-of-Line (HOL) Blocking / 420
 13.3 Stage-To-Stage Flow Control / 420
 13.3.1 Back-Pressure / 421
 13.3.2 Credit-Based Flow Control / 421
 13.3.3 The DQ Scheme / 422
 13.4 Port-To-Port Flow Control / 424
 13.4.1 Static Hashing / 424
 13.4.2 Dynamic Hashing / 425
 13.4.3 Time-Stamp-Based Resequence / 428
 13.4.4 Window-Based Resequence / 428
CONTENTS

13.5 Performance Analysis / 431
 13.5.1 Random Uniform Traffic / 431
 13.5.2 Hot-Spot Traffic / 432
 13.5.3 Bursty Traffic / 432
 13.5.4 Hashing Schemes / 432
 13.5.5 Window-Based Resequencing Scheme / 434

13.6 Prototype / 434

14 LOAD-BALANCED SWITCHES 438

14.1 Birkhoff–Von Neumann Switch / 438

14.2 Load-Balanced Birkhoff–von Neumann Switches / 441
 14.2.1 Load-Balanced Birkhoff–von Neumann
 Switch Architecture / 441
 14.2.2 Performance of Load-Balanced Birkhoff–von
 Neumann Switches / 442

14.3 Load-Balanced Birkhoff–von Neumann Switches With FIFO Service / 444
 14.3.1 First Come First Served (FCFS) / 446
 14.3.2 Earliest Deadline First (EDF) and EDF-3DQ / 450
 14.3.3 Full Frames First (FFF) / 451
 14.3.4 Full Ordered Frames First (FOFF) / 455
 14.3.5 Mailbox Switch / 456
 14.3.6 Byte-Focal Switch / 459

15 OPTICAL PACKET SWITCHES 468

15.1 Opto-Electronic Packet Switches / 469
 15.1.1 Hypass / 469
 15.1.2 Star-Track / 471
 15.1.3 Cisneros and Brackett / 472
 15.1.4 BNR (Bell-North Research) Switch / 473
 15.1.5 Wave-Mux Switch / 474

15.2 Optoelectronic Packet Switch Case Study I / 475
 15.2.1 Speedup / 476
 15.2.2 Data Packet Flow / 477
 15.2.3 Optical Interconnection Network (OIN) / 477
 15.2.4 Ping-Pong Arbitration Unit / 482

15.3 Optoelectronic Packet Switch Case Study II / 490
 15.3.1 Petabit Photonic Packet Switch Architecture / 490
 15.3.2 Photonic Switch Fabric (PSF) / 495

15.4 All Optical Packet Switches / 503
 15.4.1 The Staggering Switch / 503
 15.4.2 ATMOS / 504
CONTENTS

15.4.3 Duan’s Switch / 505
15.4.4 3M Switch / 506

15.5 Optical Packet Switch with Shared Fiber Delay Lines
 Single-stage Case / 509
 15.5.1 Optical Cell Switch Architecture / 509
 15.5.2 Sequential FDL Assignment (SEFA) Algorithm / 512
 15.5.3 Multi-Cell FDL Assignment (MUFA) Algorithm / 518

15.6 All Optical Packet Switch with Shared Fiber Delay
 Lines – Three Stage Case / 524
 15.6.1 Sequential FDL Assignment for
 Three-Stage OCNS (SEFAC) / 526
 15.6.2 Multi-Cell FDL Assignment for
 Three-Stage OCNS (MUFA) / 526
 15.6.3 FDL Distribution in Three-Stage OCNS / 528
 15.6.4 Performance Analysis of SEFAC and MUFA / 530
 15.6.5 Complexity Analysis of SEFAC and MUFA / 532

16 HIGH-SPEED ROUTER CHIP SET 538

16.1 Network Processors (NPs) / 538
 16.1.1 Overview / 538
 16.1.2 Design Issues for Network Processors / 539
 16.1.3 Architecture of Network Processors / 542
 16.1.4 Examples of Network Processors – Dedicated Approach / 543

16.2 Co-Processors for Packet Classification / 554
 16.2.1 LA-1 Bus / 554
 16.2.2 TCAM-Based Classification Co-Processor / 556
 16.2.3 Algorithm-Based Classification Co-Processor / 562

16.3 Traffic Management Chips / 567
 16.3.1 Overview / 567
 16.3.2 Agere’s TM Chip Set / 567
 16.3.3 IDT TM Chip Set / 573
 16.3.4 Summary / 579

16.4 Switching Fabric Chips / 579
 16.4.1 Overview / 579
 16.4.2 Switch Fabric Chip Set from Vitesse / 580
 16.4.3 Switch Fabric Chip Set from AMCC / 589
 16.4.4 Switch Fabric Chip Set from IBM (now of AMCC) / 593
 16.4.5 Switch Fabric Chip Set from Agere / 597

INDEX 606
PREFACE

As increasing voice, audio, video, TV, and gaming traffic is carried over IP, Internet traffic continues to grow rapidly. Many network-related applications are emerging for portable devices. As smart cellular phone technology advances, the price decreases, and the infrastructure to support wireless applications (voice, data, video) is being deployed ubiquitously to meet unprecedented demands from users. All of these fast-growing services translate into the high volume of Internet traffic, stringent quality of service (QoS) requirements, large number of hosts/devices to be supported, large forwarding tables to support, high speed packet processing, and large storage capability. When designing/operating next generation switches and routers, these factors create new specifications and new challenges for equipment vendors and network providers.

Jonathan has co-authored two books: *Broadband Packet Switching Technologies—A Practical Guide to ATM Switches and IP Routers* and *Quality of Service Control in High-Speed Networks*, published by John Wiley in 2001. Because the technologies in both electronics and optics have significantly advanced and because the design specifications for routers have become more demanding and challenging, it is time to write another book. This book includes new architectures, algorithms, and implementations developed since 2001. Thus, it is more updated and more complete than the two previous books.

In addition to the need for high-speed and high-capacity transmission/switching equipment, the control function of the equipment and network has also become more sophisticated in order to support new features and requirements of the Internet, including fast re-routing due to link failure (one or more failures), network security, network measurement for dynamic routing, and easy management. This book focuses on the subsystems and devices on the data plane. There is a brief introduction to IP network management to familiarize readers with how the network is managed, as many routers are interconnected together.

The book starts with an introduction to today’s and tomorrow’s networks, the router architectures and their building blocks, examples of commercial high-end routers, and the challenging issues of designing high-performance high-speed routers. The book first covers the main functions in the line cards of a core router, including route lookup, packet classification, and traffic management for QoS control described in Chapters 2, 3, and
4, respectively. It then follows with 11 chapters in packet switching designs, covering various architectures, algorithms, and technologies (including electrical and optical packet switching). The last chapter of the book presents the state-of-the-art commercial chipsets used to build the routers. This is one of the important features in this book—showing readers the architecture and functions of practical chipsets to reinforce the theories and conceptual designs covered in previous chapters.

A distinction of this book is that we provide as many figures as possible to explain the concepts. Readers are encouraged to first scan through the figures and try to understand them before reading the text. If fully understood, readers can skip to the text to save time. However, the text is written in such a way as to talk the readers through the figures.

Jonathan and Bin each have about 20 years of experience researching high-performance switches and routers, implementing them in various systems with VLSI (very-large-scale integration) and FPGA (field-programmable gate array) chips, transferring technology to the industry, and teaching such subjects in the college and to the industry companies. They have accumulated their practical experience in writing this book. The book includes theoretical concepts and algorithms, design architectures, and actual implementations. It will benefit the readers in different aspects of building a high-performance switch/router. The draft of the book has been used as a text for the past two years when teaching senior undergraduate and first-year graduate students at the author’s universities. If any errors are found, please send an email to chao@poly.edu. The authors will then make the corresponding corrections in future editions.

Audience

This book is an appropriate text for senior and graduate students in Electrical Engineering, Computer Engineering, and Computer Science. They can embrace the technology of the Internet so as to better position themselves when they graduate and look for jobs in the high-speed networking field. This book can also be used as a reference for people working in the Internet-related area. Engineers from network equipment vendors and service providers can also benefit from the book by understanding the key concepts of packet switching systems and the key techniques of building high-speed and high-performance routers.
ACKNOWLEDGMENTS

This book would not have been published without the help of many people. We would like to thank them for their efforts in improving the quality of the book.

Several chapters of the book are based on research work that was done at Polytechnic University and Tsinghua University. We would like to thank several individuals who contributed material to some sections. They are Professor Ming Yu (Florida State University) on Section 1.5, Professor Derek C. W. Pao (City University of Hong Kong) on Section 2.4.2, and Professor Aleksandra Smiljanic (Belgrade University) on a scheduling scheme she proposed in Chapter 7. We would like to express our gratitude to Dr. Yihan Li (Auburn University) for her contribution to part of Chapter 7, and the students in Bin’s research group in Tsinghua University for their contribution to some chapters. They are Chencheng Hu, Kai Zheng, Zhen Liu, Lei Shi, Xuefei Chen, Xin Zhang, Yang Xu, Wenjie Li, and Wei Li. The manuscript has been managed from the beginning to the end by Mr Jian Li (Polytechnic University), who has put in tremendous effort to carefully edit the manuscript and serve as a coordinator with the publisher.

The manuscript draft was reviewed by the following people and we would like to thank them for their valuable feedback: Professor Cristina López Bravo (University of Vigo, Spain), Dr Hiroaki Harai (Institute of Information and Communications Technology, Japan), Dr Simin He (Chinese Academy of Sciences), Professor Hao Che (University of Texas at Arlington), Professor Xiaohong Jiang (Tohoku University, Japan), Dr Yihan Li (Auburn University), Professor Dr Soung Yue Liew (Universiti Tunku Abdul Rahman, Malaysia), Dr Jan van Lunteren (IBM, Zurich), Professor Jinsoo Park (Essex County College, New Jersey), Professor Roberto Rojas-cessa (New Jersey Institute of Technology), Professor Aleksandra Smiljanic (Belgrade University, Serbia and Montenegro), Professor Dapeng Wu (University of Florida), and Professor Naoaki Yamanaka (Keio University, Japan).
ACKNOWLEDGMENTS

Jonathan would like to thank his wife, Ammie, and his children, Jessica, Roger, and Joshua, for their love, support, encouragement, patience, and perseverance. He also thanks his parents for their encouragement.

Bin would like to thank his wife, Yingjun Ma, and his daughter, Jenny for their understanding and support. He also thanks his father-in-law for looking after Jenny to spare his time to prepare the book.