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Thermal buckling of a simply supported moderately
thick rectangular FGM plate
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Abstract

Equilibrium and stability equations of a moderately thick rectangular plate made of functionally graded materials under thermal

loads are derived based on the first order shear deformation theory. It is assumed that the material properties vary as a power form

of thickness coordinate variable z. The derived equilibrium and buckling equations are then solved analytically for a plate with

simply supported boundary conditions. Two types of thermal loading, uniform temperature rise and gradient through the thickness

are considered, and the buckling temperatures are derived. The influences of the plate aspect ratio, the relative thickness, the

gradient index and the transverse shear on buckling temperature difference are all discussed.
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1. Introduction

In recent years, functionally graded materials

(FGMs) which named by a group of material scientists
in Japan [1] in 1984, have attracted much interest as

heat-shielding materials for aircraft, space vehicles and

other engineering applications. Functionally graded

materials are composite materials, which are micro-

scopically inhomogeneous, and the mechanical proper-

ties vary smoothly or continuously from one surface to

the other. It is this continuous change that results in

gradient properties in functionally graded materials.
Typically, these materials are made from a mixture of

metal and ceramic, or a combination of different metals.

Unlike fiber-matrix composites which have a strong

mismatch of mechanical properties across the interface

of two discrete materials bonded together and may re-

sult in de-bonding at high temperatures, functionally

graded materials have the advantage of being able to

survive environment with high temperature gradient,
while maintaining their structural integrity. The ceramic

material provides high temperature resistance due to its

low thermal conductivity, while the ductile metal com-
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ponent prevents fracture due to thermal stresses. Fur-

thermore, a mixture of ceramic and metal with a

continuously varying volume fraction can be easily

manufactured.
In view of the advantages of functionally graded

materials, a number of investigations dealing with

thermal stresses had been published in the scientific lit-

erature. In recent years, Tanigawa et al. [2] derived a

one-dimensional temperature solution for a non-homo-

geneous plate in transient state and also optimized the

material composition by introducing a laminated com-

posite model. Analytical formulation and numerical
solution of the thermal stresses and deformations for

axisymmetrical shells of FGM subjected to thermal

loading due to fluid was obtained by Takezono et al. [3].

Aboudi et al. developed a new kind of higher order

shear deformation theory for functionally graded ma-

terials that explicitly couples the microstructural and

macrostructural effects [4]. The response of a function-

ally graded ceramic–metal plate was investigated by
Praveen and Reddy using a finite element model that

accounts for the transverse shear strains, rotary inertia,

and moderately large rotations in the Von Karman

sense [5]. In Ref. [6], Reddy et al. developed the rela-

tionship between the bending solutions of the classical

plate theory and the first order plate theory for func-

tionally graded circular plates. Sumi studied the prop-

agation and reflection of thermal and mechanical waves
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Fig. 1. Configuration and coordinate system of a rectangular plate.
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in FGMs under impulsive heat addition [7]. Develop-

ment of the analysis is based on the equations of coupled

thermoelasticity along with a modified Fourier’s law.

The dynamic thermoelastic response of functionally
graded cylinders and plates was studied by Reddy and

Chin [8]. They derived a thermoelastic boundary value

problem using the first order shear deformation plate

theory that accounts for the transverse shear strains and

rotations coupled with a three-dimensional heat con-

duction equation for a functionally graded plate.

Zimmerman and Lutz determined the exact solution of

thermal stresses and thermal expansions for a uniformly
heated functionally graded cylinder [9]. They derived a

governing equation for the thermoelastic equilibrium of

the cylinder, by substituting stress–strain and kinematic

relations into the stress equilibrium equation of cylinder

allowing the elastic moduli and thermal expansion co-

efficient to vary in the radius direction. Then the equa-

tion was solved analytically. Chunyu et al. considered

the problem of a cylindrical crack located in the FGM
interlayer between two coaxial elastic dissimilar homo-

geneous cylinders under torsional impact loading [10].

The shear modulus and the mass density of the FGM

interlayer are assumed to vary continuously between

those of the two coaxial cylinders. Recently, Tanigawa

et al. have treated the three-dimensional thermoelastic

problem of a medium with nonhomogeneous material

properties such as shear modulus of elasticity, coefficient
of linear thermal expansion, and thermal conductivity

[11]. Considerable research has also been performed on

the analysis of the stresses and deformations of func-

tionally graded structures. However, Buckling analyses

of FGM structures are scarce in the open literature. A

formulation of the stability problem for FGM plates

was presented by Birman [12] where a micro-mechanical

model was employed to solve the buckling problem for a
rectangular plate subjected to uniaxial compression. The

stability of a functionally graded cylindrical shell under

axial harmonic loading was investigated by Ng et al.

[13]. Recently, Wu et al. presented the thermal buckling

analysis of a simply supported thin rectangular FGM

plate based on the classical plate theories [16]. In that

paper, the material properties are assumed to vary as a

power form of thickness coordinate variable, the linear
stability equations are derived using the critical equi-

librium method, and then the closed form of solutions

for the linear stability equations is presented. They also

investigated the influence of neutral plane deformation,

the aspect ratio, the relative thickness, and the graded

index of the plate on the critical buckling temperature

difference. In view of the fact that few solutions to

buckling of thick plates under thermal loads exist, and
encouraged by previous studies, an attempt is made to

solve the thermal buckling problem of a functionally

graded plate with moderately thickness and simply

supported boundary conditions. In this paper, the sta-
bility equations are established based on the first order

shear deformation theory. Then five equations are

combined into one governing equation with respect to w
by eliminating the other variables. At last, the analytical
solution for this equation is presented and the influence

of transverse shear deformation on buckling is dis-

cussed. In our study, two kinds of thermal loading,

uniform temperature rise and gradient through the

thickness are considered.
2. Material properties

Consider a rectangular plate made of a mixture of

metal and ceramic as shown in Fig. 1. The material in

top surface and in bottom surface is metal and ceramic

respectively. The modulus of elasticity E, the coefficient

of thermal expansion a and the Poisson’s ratio m are

assumed as

EðzÞ ¼ EcVc þ Emð1� VcÞ;
aðzÞ ¼ acVc þ amð1� VcÞ; mðzÞ ¼ m0 ð1Þ

where Em and am denote the elastic moduli and the co-

efficient of thermal expansion of metal respectively; Ec

and ac denote the elastic moduli and the coefficient of

thermal expansion of ceramic respectively; Vc denotes

the volume fraction of the ceramic and is assumed as a

power function as follows:

Vc ¼ ðz=hþ 1=2Þk ð2Þ
where z is the thickness coordinate variable; and

�h=26 z6 h=2, where h is the thickness of the plate and

k is the power law index that takes values greater than or

equals to zero. Substituting Eq. (2) into Eq. (1), material

properties of the FGM plate are determined, which are
the same as the equations proposed by Praveen and

Reddy [5]

EðzÞ ¼ Ecmðz=hþ 1=2Þk þ Em;

aðzÞ ¼ acmðz=hþ 1=2Þk þ am; mðzÞ ¼ m0 ð3Þ

where

Ecm ¼ Ec � Em; acm ¼ ac � am ð4Þ
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3. Stability equations

Assume that u, v, w denote the displacements of the

neutral plane of the plate in x, y, z directions respec-
tively; /x, /y denote the rotations of the normals to the

plate midplane. According to the first order shear de-

formation theory, the strains of the plate can be ex-

pressed as

ex ¼ u;x þ z/x; ey ¼ u;y þ z/y ;

cxy ¼ u;y þ v;x þ zð/x;y þ /y;xÞ;

czx ¼ /x þ w;x; czy ¼ /y þ w;y

ð5Þ

Hooke’s law for a plate is defined as

rx ¼
E

1� m2
½ex þ mey � ð1þ mÞaT �;

ry ¼
E

1� m2
½ey þ mex � ð1þ mÞaT �

sxy ¼
E

2ð1þ mÞ cxy ; szx ¼
E

2ð1þ mÞ czx; szy ¼
E

2ð1þ mÞ czy

ð6Þ

The forces and moments per unit length of the plate

expressed in terms of the stress components through the

thickness are

Nij ¼
Z h=2

�h=2
rij dz; Mij ¼

Z h=2

�h=2
rijzdz; Qij ¼

Z h=2

�h=2
sij dz

ð7Þ

Substituting Eqs. (3), (5), and (6) into Eqs. (7), gives the

constitutive relations as

Nx ¼
E1

1� m2
ðu;x þ mv;yÞ þ

E2

1� m2
ð/x;x þ m/y;yÞ �

U
1� m

Ny ¼
E1

1� m2
ðmu;x þ v;yÞ þ

E2

1� m2
ðm/x;x þ /y;yÞ �

U
1� m

Nxy ¼
E1

2ð1þ mÞ ðu;y þ v;xÞ þ
E2

2ð1þ mÞ ð/x;y þ /y;xÞ

Mx ¼
E2

1� m2
ðu;x þ mv;yÞ þ

E3

1� m2
ð/x;x þ m/y;yÞ �

H
1� m

My ¼
E2

1� m2
ðmu;x þ v;yÞ þ

E3

1� m2
ðm/x;x þ /y;yÞ �

H
1� m

Mxy ¼
E2

2ð1þ mÞ ðu;y þ v;xÞ þ
E3

2ð1þ mÞ ð/x;y þ /y;xÞ

Qx ¼
E1

2ð1þ mÞ ð/x þ w;xÞ; Qy ¼
E1

2ð1þ mÞ ð/y þ w;yÞ

ð8Þ
where

E1 ¼ Emhþ
Ecmh
k þ 1

; E2 ¼
kEcmh2

2ðk þ 1Þðk þ 2Þ ;

E3 ¼
1

12
Emh3 þ

1

k þ 3

�
� 1

k þ 2
þ 1

4ðk þ 1Þ

�
Ecmh3

U ¼
Z h=2

�h=2
Em

"
þ Ecm

1

2

�
þ z
h

�k
#

� am

"
þ acm

1

2

�
þ z
h

�k
#
T ðx; y; zÞdz

H ¼
Z h=2

�h=2
Em

"
þ Ecm

1

2

�
þ z
h

�k
#

� am

"
þ acm

1

2

�
þ z
h

�k
#
T ðx; y; zÞzdz

ð9Þ

The nonlinear equations of equilibrium according to

Von Karman’s theory are given by

Nx;x þ Nxy;y ¼ 0

Ny;y þ Nxy;x ¼ 0

Mx;x þMxy;y � Qx ¼ 0

Mxy;x þMy;y � Qy ¼ 0

Qx;x þ Qy;y þ qþ Nxw;xx þ Nyw;yy þ 2Nxyw;xy ¼ 0

ð10Þ

When Eqs. (8) are substituted into Eqs. (10), the equa-

tions of equilibrium can be expressed in terms of dis-

placements. If the temperature distributes uniformly in x
and y directions, the equations of equilibrium can be

written as follows:

E1

1� m2
ðu;xx þ mv;xyÞ þ

E1

2ð1þ mÞ ðu;yy þ v;xyÞ

þ E2

1� m2
ð/x;xx þ m/y;xyÞ þ

E2

2ð1þ mÞ ð/x;yy þ /y;xyÞ ¼ 0

E1

1� m2
ðmu;xy þ v;yyÞ þ

E1

2ð1þ mÞ ðu;xy þ v;xxÞ

þ E2

1� m2
ðm/x;xy þ /y;yyÞ þ

E2

2ð1þ mÞ ð/x;xy þ /y;xxÞ ¼ 0

E2

1� m2
ðu;xx þ mv;xyÞ þ

E2

2ð1þ mÞ ðu;yy þ v;xyÞ

þ E3

1� m2
ð/x;xx þ m/y;xyÞ þ

E3

2ð1þ mÞ ð/x;yy þ /y;xyÞ

� E1

2ð1þ mÞ ð/x þ w;xÞ ¼ 0

E2

1� m2
ðmu;xy þ v;yyÞ þ

E2

2ð1þ mÞ ðu;xy þ v;xxÞ

þ E3

1� m2
ðm/x;xy þ /y;yyÞ þ

E3

2ð1þ mÞ ð/x;xy þ /y;xxÞ

� E1

2ð1þ mÞ ð/y þ w;yÞ ¼ 0

E1

2ð1þ mÞ ð/x;x þ w;xxÞ þ
E1

2ð1þ mÞ ð/y;y þ w;yyÞ

þ Nxw;xx þ 2Nxyw;xy þ Nyw;yy þ q ¼ 0

ð11Þ
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By eliminating the variables u, v, /x, /y , the equations of

equilibrium can be covered into one equation as

r4wþ 2ð1þ mÞ
E1

r2ðNxw;xx þ 2Nxyw;xy þ Nyw;yy þ qÞ

� E1ð1� m2Þ
E1E3 � E2

2

ðNxw;xx þ 2Nxyw;xy þ Nyw;yy þ qÞ ¼ 0

ð12Þ
To establish the stability equations, the critical equilib-

rium method is used. Assuming that the state of stable

equilibrium of a general plate under thermal load may
be designated by w0. The displacement of the neigh-

boring state is w0 þ w1, where w1 is an arbitrarily small

increment of displacement. Substituting w0 þ w1 into

Eq. (12) and subtracting the original equation, results in

the following stability equation

r4w1 þ
2ð1þ mÞ

E1

r2ðN 0
x w1;xx þ 2N 0

xyw1;xy þ N 0
y w1;yyÞ

� E1ð1� m2Þ
E1E3 � E2

2

ðN 0
x w1;xx þ 2N 0

xyw1;xy þ N 0
y w1;yyÞ ¼ 0

ð13Þ
where, Nx0, Ny0 and Nxy0 refer to the pre-buckling force

resultants.
4. Buckling analysis

In this section, the closed form solutions of Eq. (13)

for two types of thermal loading conditions are pre-

sented. The plate is assumed simply supported in

bending and rigidly fixed in extension. The temperature

change is varied only in the thickness direction.
4.1. Uniform temperature rises

To determine the buckling temperature difference

DTcr, the pre-buckling thermal forces should be found

firstly. Solving the membrane form of equilibrium

equations, gives the pre-buckling force resultants

Nx0 ¼ � U
1� m

; Ny0 ¼ � U
1� m

; Nxy0 ¼ 0 ð14Þ

Substituting Eq. (14) into Eq. (13), one obtains

r4w1 �
2ð1þ mÞ

E1

U
1� m

r4w1 þ
E1ð1� m2Þ
E1E3 � E2

2

U
1� m

r2w1 ¼ 0

ð15Þ
If the transverse shear deformation is not considered,

Eq. (15) can be reduced as [16]

r4w1 þ
E1ð1� m2Þ
E1E3 � E2

2

U
1� m

r2w1 ¼ 0 ð16Þ

The simply supported boundary condition is defined as

w1 ¼ 0; Mx1 ¼ 0; /y1 ¼ 0 on x ¼ 0; a

w1 ¼ 0; My1 ¼ 0; /x1 ¼ 0 on y ¼ 0; b
ð17Þ
The following approximate solution is seen to satisfy

both the governing equation and the boundary condi-

tions

w1 ¼ c sinðmpx=aÞ sinðnpy=bÞ ð18Þ
where m, n are number of half waves in the x and y di-

rections, respectively, and c is a constant coefficient.
Substituting Eq. (18) into Eq. (15), and substituting for

the thermal parameter U from Eq. (9), yields

DT ¼ ðE1E3 � E2
2Þð1� mÞp2ðm2 þ n2B2

aÞ
2ð1þ mÞðE1E3 � E2

2Þp2ðm2 þ n2B2
aÞ þ E2

1a2ð1� m2Þ
E1

Ph

ð19Þ
where

P ¼ Emam þ ðEcmam þ EmacmÞ=ðk þ 1Þ þ Ecmacm=ð2k þ 1Þ;
Ba ¼ a=b ð20Þ
The critical temperature difference is obtained for the

values of m, n that make the preceding expression a

minimum. Apparently, when minimization methods are
used, critical temperature difference is obtained for

m ¼ n ¼ 1, thus

DTcr ¼
ðE1E3 � E2

2Þð1� mÞp2ð1þ B2
aÞ

2ð1þ mÞðE1E3 � E2
2Þp2ð1þ B2

aÞ þ E2
1a2ð1� m2Þ

E1

Ph

ð21Þ
When k ¼ 0, Eq. (21) can be reduced to the buckling

temperature difference of homogeneous plates and

written as

DTcr ¼
ð1� mÞp2B2

h½1þ B2
a�

2ð1þ mÞp2B2
h½1þ B2

a�aþ 12ð1� m2Þa ð22Þ

where

Bh ¼ h=a ð23Þ
When transverse shear is neglected, Eq. (22) is changed as

DTcr ¼
p2B2

h½1þ B2
a�

12ð1þ mÞa ð24Þ

Eq. (24) has been obtained by Tauchert [14] and

Thornton [15] for homogeneous isotropic plates.

4.2. Temperature changes across the thickness

For a functionally graded plate, the temperature

change is not uniform. Usually, the temperature rises

much higher at the ceramic side than that in the metal
side of the plate. In this case, the temperature through

thickness is governed by the one-dimensional Fourier

equation of heat conduction

d

dz
KðzÞ dT

dz

� �
¼ 0; T ¼ Tc ðat z ¼ h=2Þ;

T ¼ Tm ðat z ¼ �h=2Þ ð25Þ
where, KðzÞ is the coefficient of thermal conduction; Tc
and Tm denote the temperature changes at the ceramic

side and the metal side, respectively. Similar to the co-

efficients of elastic moduli and thermal expansion, the
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coefficient of heat conduction is also assumed as a power

form of coordinate variable z as

KðzÞ ¼ Kcmðz=hþ 1=2Þk þ Km ð26Þ
where

Kcm ¼ Kc � Km ð27Þ
The solution of Eq. (25) can be obtained by means of

polynomial series. Taking the first seven terms of the

series, we have

T ðzÞ ¼ Tm þ DT
C

2zþ h
2h

� �"
� Kcm

ðk þ 1ÞKm

2zþ h
2h

� �kþ1

þ K2
cm

ð2k þ 1ÞK2
m

2zþ h
2h

� �2kþ1

� K3
cm

ð3k þ 1ÞK3
m

2zþ h
2h

� �3kþ1

þ K4
cm

ð4k þ 1ÞK4
m

2zþ h
2h

� �4kþ1

� K5
cm

ð5k þ 1ÞK5
m

2zþ h
2h

� �5kþ1
#

ð28Þ

with

C ¼ 1� Kcm

ðk þ 1ÞKm

þ K2
cm

ð2k þ 1ÞK2
m

� K3
cm

ð3k þ 1ÞK3
m

þ K4
cm

ð4k þ 1ÞK4
m

� K5
cm

ð5k þ 1ÞK5
m

ð29Þ

where DT ¼ Tc � Tm is defined as the temperature differ-

ence between ceramic-rich and metal-rich surface of the
plate. The pre-buckling force resultants for this case of

loading is in the same form as for the preceding case, and

given by Eq. (14). When the approximate solution (18) is
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Fig. 2. Critical buckling temperature of FGM plate under un
substituted into Eq. (15), and the definition of parameter

U from Eq. (9) are used, the expression for thermal

buckling of the plate is obtained. Taking m ¼ n ¼ 1, the

critical buckling temperature is expressed as

DTcr

¼ 1

H1

ðE1E3 � E2
2ÞE1ð1� mÞp2ð1þ B2

aÞ
2ð1þ mÞðE1E3 � E2

2Þp2ð1þ B2
aÞhþ E2

1a2ð1� m2Þh

�
� PTm

�
ð30Þ

where

H1 ¼
1

C
Emam½1=2

�
� Kcm=ðk þ 1Þ=ðk þ 2Þ=Km

þ K2
cm=ð2k þ 1Þ=ð2k þ 2Þ=K2

m � K3
cm=ð3k

þ 1Þ=ð3k þ 2Þ=K3
m þ K4

cm=ð4k þ 1Þ=ð4k
þ 2Þ=K4

m � K5
cm=ð5k þ 1Þ=ð5k þ 2Þ=K5

m�
þ ðEmacm þ EcmamÞ½1=ðk þ 2Þ � Kcm=ðk

þ 1Þ=ð2k þ 2Þ=Km þ K2
cm=ð2k þ 1Þ=ð3k

þ 2Þ=K2
m � K3

cm=ð3k þ 1Þ=ð4k þ 2Þ=K3
m

þ K4
cm=ð4k þ 1Þ=ð5k þ 2Þ=K4

m � K5
cm=ð5k

þ 1Þ=ð6k þ 2Þ=K5
m� þ Ecmacm½1=ð2k þ 2Þ

� Kcm=ðk þ 1Þ=ð3k þ 2Þ=Km þ K2
cm=ð2k

þ 1Þ=ð4k þ 2Þ=K2
m � K3

cm=ð3k þ 1Þ=ð5k
þ 2Þ=K3

m þ K4
cm=ð4k þ 1Þ=ð6k þ 2Þ=K4

m

� K5
cm=ð5k þ 1Þ=ð7k þ 2Þ=K5

m�
�

ð31Þ
5. Results and discussion

To illustrate the proposed method, a ceramic–metal

functionally graded plate is considered. The combination
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Fig. 4. Critical buckling temperature of FGM plate under uniform

temperature rise vs gradient index of the plate.
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of materials consists of aluminum and alumina. The

Young’s modulus, conductivity, and the coefficient of

thermal expansion for alumina is Ec ¼ 380 GPa,

Kc ¼ 10:4 W/mK, ac ¼ 7:4� 10�6 (1/�C), and for
aluminium is Em ¼ 70 GPa, Km ¼ 204 W/mK, am ¼
23� 10�6 (1/�C), respectively. Poisson’s ratio is chosen

as m ¼ 0:3.
Firstly, the critical temperature differences are calcu-

lated for functionally graded plates under uniform

temperature rise, and are plotted in Figs. 2–4. Fig. 2

shows the critical buckling temperature difference DTcr
vs the thickness to span ratio h=a for different values of
volume fraction exponent kða=b ¼ 1Þ. It is seen that the

critical temperature difference increases monotonically

as the relative thickness h=a increases. The values of the

critical temperature differences calculated by using the

first order shear deformation theory are lower than

those calculated by using the classical plate theory, es-

pecially for thick plates. Fig. 3 shows the variation trend

of critical temperature difference with respect to the
plate aspect ratio a=b for different values of material

gradient index k. The relative thickness of the plate is set
as h=a ¼ 0:2. It is observed that with increasing the plate

aspect ratio a=b from 1 to 10, the critical buckling

temperature difference also increases steadily, whatever

the material gradient index k is. It is also found that

transverse shear deformation has some effect on the

buckling temperature difference. As the plate aspect
ratio increases, the critical temperature difference in-

creases slowly when the transverse shear is considered.

However it increases very rapidly if the shear deforma-

tion is neglected. This means that the larger the plate

aspect ratio, the greater the influence of shear defor-

mation on buckling temperature will be. Fig. 4 demon-
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Fig. 3. Critical buckling temperature of FGM plate under
strates the buckling temperature DTcr vs. the material

graded index k. From Fig. 4 we can see that unlike the

former cases, the critical temperature difference dem-

onstrates a decreasing trend with increasing gradient
index. It is evident that DTcr changes very slowly when

the material gradient index k is greater than 2.

The temperature difference of a FGM plate under

nonuniform temperature change across the thickness is

also studied. Tables 1 and 2 present the critical tem-

perature differences for thin and thick plates, respec-
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uniform temperature rise vs aspect ratio of the plate.



Table 1

Critical buckling temperature difference of FGM thin plate under nonlinear temperature rise across the thickness (h=a ¼ 0:01, Tm ¼ 5�)

k a=b ¼ 1 a=b ¼ 2 a=b ¼ 3 a=b ¼ 4 a=b ¼ 5

0 24.19821 75.49551 160.9910 280.6848 434.5767

(24.16215) (75.39518) (160.5901) (279.5281) (431.8769)

1 7.663577 38.68384 90.38428 162.7649 255.8247

(7.655398) (38.63276) (90.18013) (162.1757) (254.4500)

5 4.877429 28.33892 67.44139 122.1849 192.5693

(4.869881) (28.29178) (67.25305) (121.6415) (191.3010)

The values in brackets are calculated using the first order shear deformation theory.

Table 2

Critical buckling temperature difference of FGM thick plate under nonlinear temperature rise across the thickness (h=a ¼ 0:1, Tm ¼ 5�)

k a=b ¼ 1 a=b ¼ 2 a=b ¼ 3 a=b ¼ 4 a=b ¼ 5

0 3409.821 8539.554 17,089.10 29,058.47 44,447.67

(3256.310) (7640.640) (13,835.53) (20,760.85) (27,586.74)

1 2055.001 5157.028 10,327.07 17,565.13 26,871.21

(1976.297) (4691.691) (8619.424) (13,141.43) (17,740.25)

5 1553.336 3899.485 7809.732 13,284.08 20,322.53

(1481.297) (3478.338) (6288.939) (9415.583) (12,481.59)

The values in brackets are calculated using the first order shear deformation theory.
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tively, with various aspect ratios a=b and various ma-

terial graded indexes k. We assume that the temperature

rises 5 �C in the metal-rich surface of the plate. From

these two tables, it is observed that the buckling tem-

perature difference DTcr increase as the plate aspect ratio
a=b increases, for both thin and thick plates, just like the

proceeding cases. It is also observed that the transverse

shear deformation has little effect on the buckling tem-
perature difference for thin plate and could be neglected,
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Fig. 5. Critical buckling temperature difference of FGM thick pl
while for thick plate, the influence of transverse shear on

buckling is considerably high and must be considered.

As expected, for a plate with large aspect ratio, the effect

of the transverse shear will be higher than that for a

plate with small aspect ratio. For an example, when

k ¼ 1, a=b ¼ 1, the relative error of the values of buck-

ling temperature difference calculated using the two

different theories is 3.8%, however when k ¼ 1, a=b ¼ 5
it will be as high as 34%.
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Fig. 5 demonstrates the critical temperature difference

vs. material gradient index for a functionally graded plate

under nonuniform temperature rise across the thickness.

Similar to the case of which the temperature rises uni-
formly, the critical buckling temperature difference de-

creases as the graded index k increases.When thematerial

gradient index k is greater than 2, DTcr decreases very

slowly.
6. Conclusions

In the present paper, equilibrium and stability equa-

tions for a simply supported rectangular functionally

graded plate with moderate thickness under thermal

loading are obtained using the first order shear defor-
mation theory, with the assumption of power law

composition for the constituent materials. Then the

buckling analysis of functionally graded plates under

two types of thermal loadings is presented. Closed form

solutions for the critical buckling temperature differ-

ences of plates are presented. Based on the numerical

results, the following conclusions are reached:

(1) The critical buckling temperature differences DTcr
for functionally graded plates are generally lower

than the corresponding values for homogeneous

plates. It is very important to check the strength of

the functionally graded plate due to thermal buck-

ling, although it has many advantages as a heat-

resistant material.

(2) The critical buckling temperature difference DTcr for
a functionally graded plate is increased when the

plate aspect ratio or the thickness to span ratio in-

creases. However, it is decreased when the power

law index k increases.

(3) Transverse shear deformation has considerable ef-

fect on the critical buckling temperature difference

of functionally graded plate, especially for a thick

plate or a plate with large aspect ratio.
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