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Abstract

In this paper, the problems of thermal buckling in axial direction of cylindrical shells made of functionally graded materials are

discussed. Based on the Donnell�s shell theory, the equilibrium and stability equations of the cylindrical shell subjected to thermal

loads are derived firstly. Then the closed form solutions are presented for the shell with simply supported boundary conditions sub-

jected to three types of thermal loading. The material properties are assumed varying as a power form of thickness coordinate var-

iable. The influences of the aspect ratio, the relative thickness and the functionally graded index on the buckling temperature

difference are carefully discussed.
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1. Introduction

The use of functionally graded materials (FGMs) has

gained much popularity in recent years especially in

extreme high temperature environments such as the

nuclear reactor and high-speed spacecraft industries.
FGMs are composite materials, which are microscopi-

cally inhomogeneous, and the mechanical properties

vary smoothly or continuously from one surface to the

other. This is achieved by gradually varying the volume

fraction of the constituent materials. It is this continu-

ous change in composition that results in the graded

properties of FGMs. Typically, these materials are made

from a mixture of metal and ceramic. The advantage of
using these materials is that they are able to withstand

high-temperature gradient environments while main-

taining their structural integrity. The ceramic constitu-

ent of the material provides the high temperature

resistance due to its low thermal conductivity. The duc-

tile metal constituent, on the other hand, prevents frac-

ture caused by stresses due to the high-temperature
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gradient in a very short period of time. Furthermore, a

mixture of the ceramic and a metal with a continuously

varying volume fraction can be easily manufactured [1–

3]. This eliminates interface problems and thus the stress

distributions are smooth.

FGMs were initially designed as thermal barrier
materials for aerospace structural applications and fu-

sion reactors. These materials are now developed for

general use as structural elements in extreme high tem-

perature environments. Many studies have examined

functionally graded materials as thermal barriers. For

examples, Tanaka et al. [4] presented an improved solu-

tion to thermo-elastic material design in FGMs in order

to reduce thermal stresses. Obata and Noda [5] investi-
gated the state thermal stress field in hollow circular

cylinder and a hollow sphere of a functionally graded

material. Tanigawa et al. [6] derived a one-dimensional

temperature solution for a non-homogeneous plate in

transient state and also optimized the material composi-

tion by introducing a laminated composite model. Ana-

lytical formulation and numerical solution of the

thermal stresses and deformations for axisymmetrical
shells of FGMs subjected to thermal loading due to fluid

is obtained by Takezono et al. [7]. Zimmerman and Lutz
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Fig. 1. Coordinate system of the FGM cylindrical shell.
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analyzed the thermal stresses and deformations of FGM

plates under steady graded temperature field [8]. Reddy

and Chin investigated the thermal deformations of

FGM plates and shells in Ref. [9]. Chen et al. [10,11]

studied the stresses distribution and free vibrations of

FGM plates and shells exactly using the three dimen-
sional elastic theory via the state space method. Li and

Zou [12] analyzed the stresses distribution of a FGM

cylinder subjected to internal pressure load by the finite

element method. Durodola and Adlington [13] pre-

sented the use of numerical methods to assess the effect

of various forms of gradation of material properties to

control deformations and stresses in rotating axi-sym-

metric components such as disks and rotors. Considera-
ble research has also been performed on the analysis of

the stresses and deformations of functionally graded

structures. With the increased usage of these materials,

it is also important to understand the buckling behavior

of functionally graded material structures. A few studies

have addressed this. A formulation of the stability prob-

lem for FGM plates was presented by Birman [14] where

a micro-mechanical model was employed to solve the
buckling problem for a rectangular plate subjected to

uniaxial compression. Javaheri and Eslami presented

the thermal buckling analysis of rectangular FGM

plates based on the classical plate theory [15]. In their

paper the nonlinear equilibrium and linear stability

equations are derived using variational formulations,

and then the closed form solutions for the linear stability

equations are presented. Motivated by Javaheri, Wu
examined the buckling behavior of functionally graded

rectangular plates with simply supported boundary con-

ditions under thermal loads by using the first shear

deformation theory [16]. Buckling analysis for circular

FGM plates under radial compressive loading and ther-

mal loading have been presented by Najafizadeh and

Eslami [17].

In all the papers mentioned above, researchers have
confined their studies to FGM plates. For the thermo-

elastic stability analysis of cylindrical shells, Eslami

and Ziaii [18] discussed the buckling behavior of thin

cylindrical shells made of isotropic materials based on

improved stability equations. Thangartnam [19] pre-

sented the thermal buckling formulations for laminated

composite shells. Eslami [20] investigated the similar

problem of composite cylindrical shells. Their studies
incorporated mechanical and thermal loads simultane-

ously. Ganesan [21] analyzed the buckling and dynamic

properties of cylindrical shells made of piezoelectric

composite materials.

From the literature survey, it is seen that few studies

have been made for thermal buckling analysis of cylin-

drical shells made of functionally graded materials. This

is the motivation for this paper, the aim of which is to de-
velop the stability equations of FGM cylinders and to

discuss the buckling behavior of FGM cylindrical shells
under thermal loads. Firstly, the stability equations

of the shell are established by the critical equilibrium

method based on the Donnell�s shell theory. Then the

analytical solutions of buckling equations for FGM cy-

linders under three types of thermal loads are presented

using the Galerkin�s method. The numerical results are
validated against known data in the literature.
2. Material properties

The functionally graded cylindrical shell as shown in

Fig. 1 is assumed to be thin and of length l, thickness h

and radius R. The x-axis is taken along a generator, the
circumferential arc length subtends an angle h, and the

z-axis is directed radially outwards. The modulus of elas-

ticity E and the coefficient of thermal expansion a are as-
sumed changing in the thickness direction z based on the

Voigt�s rule over the whole range of the volume fraction,
whereas Poisson�s ratio m is assumed to be a constant as

EðzÞ ¼ EcV c þ EmV m; aðzÞ ¼ acV c þ amV m;

mðzÞ ¼ m ð1Þ

where Vm and Vc denote the volume fractions of the

metal and the ceramic, respectively. They are expressed

as

V m ¼ ðz=hþ 1=2Þk; V c ¼ 1� V m ð2Þ
where z is the thickness coordinate; and �h/2 6 z 6 h/2,

where h is the thickness of the shell and k is the power
law index that takes values greater than or equal to zero.

Substituting Eq. (2) into Eq. (1), mechanical properties

of the FGM shell are determined, which are the same

as the equations proposed by Shahsiah and Eslami [22]

EðzÞ ¼ Emcðz=hþ 1=2Þk þ Ec;

aðzÞ ¼ amcðz=hþ 1=2Þk þ ac;

mðzÞ ¼ m

ð3Þ



62 L. Wu et al. / Composite Structures 70 (2005) 60–68
where

Emc ¼ Em � Ec; amc ¼ am � ac ð4Þ
3. Stability equations

According to Donnel�s shell theory, the relations be-
tween the strains and the displacements are as

ex ¼ u;x � zw;xx; eh ¼
1

R
ðm;h þ wÞ � z

R2
w;hh;

cxh ¼
1

R
u;h þ m;x �

2z
R
w;xh ð5Þ

where u, v, w refer to displacements in x, h, z directions
respectively. Hooke�s law for a shell is defined as

rx ¼
E

1� m2
½ex þ meh � ð1þ mÞaT �;

rh ¼
E

1� m2
½eh þ mex � ð1þ mÞaT �; sxh ¼ Gcxh ð6Þ

The forces and moments per unit length of the shell

expressed in terms of the stress components through

the thickness are

Nij ¼
Z h=2

�h=2
rij dz; Mij ¼

Z h=2

�h=2
rijzdz ð7Þ

Substituting Eqs. (3), (5) and (6) into Eq. (7), gives the

constitutive relations as

Nx ¼
E1

1� m2
u;x þ

m
R
ðm;h þ wÞ

� �

� E2

1� m2
w;xx þ

m

R2
w;hh

� �
� U
1� m

N h ¼
E1

1� m2
mu;x þ

1

R
ðm;h þ wÞ

� �

� E2

1� m2
mw;xx þ

1

R2
w;hh

� �
� U
1� m

Nxh ¼
E1

2ð1þ mÞ
1

R
u;h þ m;x

� �
� E2

ð1þ mÞRw;xh

Mx ¼
E2

1� m2
u;x þ

m
R
ðm;h þ wÞ

� �

� E3

1� m2
w;xx þ

1

R2
mw;hh

� �
� H
1� m

Mh ¼
E2

1� m2
mu;x þ

1

R
ðm;h þ wÞ

� �

� E3

1� m2
mw;xx þ

1

R2
w;hh

� �
� H
1� m

Mxy ¼
E2

2ð1þ mÞ
1

R
u;h þ m;x

� �
� E3

ð1þ mÞRw;xh

ð8Þ
where

E1 ¼ Echþ
Emch
k þ 1

; E2 ¼
kEmch

2

2ðk þ 1Þðk þ 2Þ ;

E3 ¼
1

12
Ech

3 þ Emch
3 1

k þ 3
� 1

k þ 2
þ 1

4ðk þ 1Þ

� �

U ¼
Z h=2

�h=2
Ec þ Emc

1

2
þ z
h

� �k
" #

� ac þ amc
1

2
þ z
h

� �k
" #

T ðx; y; zÞdz

H ¼
Z h=2

�h=2
Ec þ Emc

1

2
þ z
h

� �k
" #

� ac þ amc
1

2
þ z
h

� �k
" #

T ðx; y; zÞzdz

ð9Þ

The nonlinear equations of equilibrium according to

Donnell�s theory are thus given by

Nx;x þ
1

R
Nxh;h ¼ 0;

1

R
N h;h þ Nxh;x ¼ 0;

Mx;xx þ
2

R
Mxh;xh þ

1

R2
Mh;hh �

1

R
N h þ Nxw;xx

þ 1

R2
N hw;hh þ

2

R
Nxhw;xh ¼ 0

ð10Þ

When Eq. (8) are substituted into Eq. (10), the equations

of equilibrium can be expressed in terms of displacement

components. If the temperature difference is uniform in

the x and h directions, the equations of equilibrium are
written as follows:

E1

1� m2
u;xx þ

E1

2ð1þ mÞR2
u;hh þ

ð1þ mÞE1

2ð1� m2ÞR m;xh

þ mE1

ð1� m2ÞRw;x �
E2

1� m2
w;xxx �

E2

ð1� m2ÞR2
w;xhh ¼ 0

ð11Þ

ð1þ mÞE1

2ð1� m2ÞRu;xh þ
E1

ð1� m2ÞR2
m;hh þ

E1

2ð1þ mÞ m;xx

þ E1

ð1� m2ÞR2
w;h �

E2

ð1� m2ÞRw;xxh �
E2

ð1� m2ÞR3
w;hhh ¼ 0

ð12Þ

E2

1� m2
ðu;xxx þ

1

R2
u;xhhÞþ

E2

ð1� m2ÞR ðm;xxh þ
1

R2
m;hhhÞ

þ mE2

ð1� m2ÞRw;xx þ
E2

ð1� m2ÞR3
w;hh

� E3

1� m2
ðw;xxxx þ

2

R2
w;xxhh þ

1

R4
w;hhhhÞ

� 1

R
E1

ð1� m2ÞRw� mE2

1� m2
w;xx �

E2

ð1� m2ÞR2
w;hh

� �

� U
ð1� mÞRþNxw;xx þ

2

R
Nxhw;xh þ

1

R2
N hw;hh ¼ 0 ð13Þ
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Substituting Eqs. (11) and (12) into Eq. (13), we can

eliminate the variables u and v. Thus we have

E2
2 � E1E3

E1ð1� m2Þr
4r4w� E1

R2
w;xxxx

þr4 Nxw;xx þ
2

R
Nxhw;xh þ

1

R2
N hw;hh

� �
¼ 0 ð14Þ

where

r4 ¼ o4

ox4
þ 2

R2

o4

ox2 oh2
þ 1

R4

o4

oh4
ð15Þ

To establish the stability equations, the critical equi-

librium method is used. Assuming that the state of sta-

ble equilibrium of a general circular cylindrical shell

under thermal load may be designated by w0. The dis-
placement of the neighboring state is w0 + w1, where

w1 is an arbitrary small increment of displacement. Sub-

stituting w0 + w1 into Eq. (14) and resulting the follow-

ing stability equation

E2
2 � E1E3

E1ð1� m2Þr
4r4w1 �

E1

R2
w1;xxxx

þr4 Nx0w1;xx þ
2

R
Nxh0w1;xh þ

1

R2
N h0w1;hh

� �
¼ 0 ð16Þ

where Nx0, Nh0 and Nxh0 are the pre-buckling thermal

forces.
4. Buckling of a FGM cylindrical shell

In this section, the closed form solutions of Eq. (16)
for three types of thermal loading conditions are

presented. To determine the buckling temperature

difference, the pre-buckling thermal forces should be

found first. The shell is assumed to be simply supported

in bending, free in radial expansion and rigidly sup-

ported in axial extension. The temperature varies

only in the thickness direction, and remains constant

in the longitudinal and circumferential directions of
the shell. Thus, the prebuckling deformation should

be axial-symmetric, and we have the following equations

u0 ¼ 0; m0 ¼ 0; N h0 ¼ Nxh0 ¼ 0 ð17Þ
From these equations and the constitutive equations,

one has

Nx0 ¼ �U ð18Þ
Substituting Eqs. (17) and (18) into the stability equation

(16), results in the following governing equation

E2
2 � E1E3

E1ð1� m2Þr
4r4w1 �

E1

R2
w1;xxxx � Ur4w1;xx ¼ 0 ð19Þ
Let

w1 ¼ c sin
mpx
l

sin nh ð20Þ

where c is an arbitrary coefficient; m and n are the buck-

ling wave numbers in the axial direction and the circum-
ferential direction, respectively. Substituting Eq. (20)

into Eq. (19), results in the following equation

E1E3 � E2
2

E1ð1� m2Þ
mp
l

� �2

þ n
R

� �2
� �4

þ E1

R2

mp
l

� �4

� U
mp
l

� �2 mp
l

� �2

þ n
R

� �2
� �2

¼ 0 ð21Þ

Then the thermal parameter U is expressed as

U ¼ E1E3 � E2
2

E1ð1� m2Þ

mp
l


 �2 þ n
R


 �2h i2
mp
l


 �2 þ E1

R2

mp
l


 �2
mp
l


 �2 þ n
R


 �2h i2
ð22Þ

For minimizing the parameter U, we should make the

first order derivative of U with respect to
mp
lð Þ2þ n

Rð Þ2
� �2

mp
lð Þ2

be zero, and we have

mp
l


 �2 þ n
R


 �2h i2
mp
l


 �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1ð1� m2Þ

ðE1E3 � E2
2ÞR2

s
ð23Þ

Then substituting Eq. (23) into Eq. (22), the minimum

value of parameter U is obtained

Umin ¼
2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E3 � E2

2

ð1� m2Þ

s
ð24Þ
4.1. Uniform temperature rise

When the temperature changes uniformly through
the shell thickness, the thermal parameter U is defined as

U ¼
Z h=2

�h=2
Ec þ Emc

1

2
þ z
h

� �k
" #

ac þ amc
1

2
þ z
h

� �k
" #

� T ðx; y; zÞdz ¼ P 
 T ð25Þ

where

P ¼ Ecachþ
Ecamc þ Emcac

k þ 1
hþ Emcamc

2k þ 1
h ð26Þ

Substituting Eq. (25) into Eq. (24), yields the critical

buckling temperature

T 0
cr ¼

2

PR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E3 � E2

2

ð1� m2Þ

s
ð27Þ

When the power law index is set equal to one (k = 1),

Eq. (27) is reduced to the critical temperature difference

for functionally graded shell with linear composition of

ceramics and metal. Also, when the power law index is
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set equal to zero, Eq. (27) is reduced to the critical tem-

perature difference of homogeneous shells

T 0
cr ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p h
aR

ð28Þ
4.2. Linear temperature change

Assume that the temperature change is linear through

the thickness as

T ðzÞ ¼ ðDT=hÞðzþ h=2Þ þ T c ð29Þ
where z is the coordinate variable in the thickness direc-

tion which measured from the middle plane of the shell.

Tc is the ceramic temperature and DT is the temperature

difference between metal surface and ceramic surface,

i.e., DT = Tm � Tc. For this loading case, the thermal

parameter U can be expressed as

U ¼ PT c þ X 
 DT ð30Þ
where

X ¼ Ecach=2þ
Ecamc þ Emcac

k þ 2
hþ Emcamc

2ðk þ 1Þ h ð31Þ

From Eq. (30) one has

DT ¼ U � PT c

X
¼ U � PTm

X � P
ð32Þ

Substituting Eq. (24) into Eq. (32), we obtain the critical

temperature difference

T 1
cr ¼ �DT cr ¼

2

ðP � X ÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E3 � E2

2

ð1� m2Þ

s
� PTm

P � X
ð33Þ
4.3. Nonlinear temperature change

The functionally graded materials are designed in

order to resist high temperature rise by ceramic, so the

temperature change will be quite different at the two
sides of the FGM structures. When the temperature rises

differently at the inner and outer surfaces of the shell,

the temperature distribution across the thickness is gov-

erned by the steady state heat conduction equation and

boundary condition as follows:
H ¼ 1

C
Ecac½h=2� Kmch=ðk þ 1Þ=ðk þ 2Þ=Kc þ K2

mch=ð2k þ 1Þ
�

þ K4
mch=ð4k þ 1Þ=ð4k þ 2Þ=K4

c � K5
mch=ð5k þ 1Þ=ð5k þ 2Þ=

� Kmch=ðk þ 1Þ=ð2k þ 2Þ=Kc þ K2
mch=ð2k þ 1Þ=ð3k þ 2Þ=K

þ K4
mch=ð4k þ 1Þ=ð5k þ 2Þ=K4

c � K5
mch=ð5k þ 1Þ=ð6k þ 2Þ=

� Kmch=ðk þ 1Þ=ð3k þ 2Þ=Kc þ K2
mch=ð2k þ 1Þ=ð4k þ 2Þ=K

þK4
mch=ð4k þ 1Þ=ð6k þ 2Þ=K4

c � K5
mch=ð5k þ 1Þ=ð7k þ 2Þ=
d

dz
KðzÞ dT

dz

� �
¼ 0; T ¼ Tm ðat z ¼ h=2Þ;

T ¼ T c ðat z ¼ �h=2Þ ð34Þ

where K(z) is the coefficient of thermal conduction. Sim-

ilar to the elasticity and thermal expansion properties,

we assume that the thermal conductive coefficient is also

a power form function as

KðzÞ ¼ Kmcðz=hþ 1=2Þk þ Kc ð35Þ
where

Kmc ¼ Km � Kc ð36Þ
The solution of Eq. (34) is obtained by means of polyno-

mial series. Taking the first seven terms of the series, the

solution for temperature distribution across the shell

thickness becomes

T ðzÞ ¼ T c þ
DT
C

2zþ h
2h

� �
� Kmc

ðk þ 1ÞKc

2zþ h
2h

� �kþ1
"

þ K2
mc

ð2k þ 1ÞK2
c

2zþ h
2h

� �2kþ1
#

þ DT
C

� K3
mc

ð3k þ 1ÞK3
c

2zþ h
2h

� �3kþ1
"

þ K4
mc

ð4k þ 1ÞK4
c

2zþ h
2h

� �4kþ1

� K5
mc

ð5k þ 1ÞK5
c

2zþ h
2h

� �5kþ1
#

ð37Þ

with

C ¼ 1� Kmc

ðk þ 1ÞKc

þ K2
mc

ð2k þ 1ÞK2
c

� K3
mc

ð3k þ 1ÞK3
c

þ K4
mc

ð4k þ 1ÞK4
c

� K5
mc

ð5k þ 1ÞK5
c

ð38Þ

where DT = Tm � Tc is defined as the temperature differ-

ence between ceramic-rich and metal-rich surfaces of the

shell. Substituting Eq. (37) into the thermal parameter
equation (9), yields

U ¼ PT c þ H 
 DT ð39Þ
where
=ð2k þ 2Þ=K2
c � K3

mch=ð3k þ 1Þ=ð3k þ 2Þ=K3
c

K5
c � þ ðEcamc þ EmcacÞ½h=ðk þ 2Þ

2
c � K3

mch=ð3k þ 1Þ=ð4k þ 2Þ=K3
c

K5
c � þ Emcamc½h=ð2k þ 2Þ

2
c � K3

mch=ð3k þ 1Þ=ð5k þ 2Þ=K3
c

K5
c �
�

ð40Þ
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From Eq. (39) one has

DT ¼ U � PT c

H
¼ U � PTm

H � P
ð41Þ

Substituting Eq. (24) into Eq. (41), we obtain the critical

temperature difference

T 2
cr ¼ �DT cr ¼

2

RðP � HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E3 � E2

2

ð1� m2Þ

s
� PTm

P � H
ð42Þ

It should be noted that Eqs. (27), (33) and (42) can

only be used to determine the buckling parameters U
for cylinders which having long geometric shapes, be-

cause Eq. (23) is not suitable for short shells. From

Eq. (23) we can obtain

b ¼ nl
pR

¼ E2
1ð1� m2Þl4

p4R2ðE1E3 � E2
2Þ

� �� �1
4

m� m2

( )1
2

ð43Þ

Since m is greater than 1 and b cannot be imagination,
the parameter in bracket must be greater than 1. Thus

we have

Z ¼ E2
1ð1� m2Þl4

p4R2ðE1E3 � E2
2Þ

P 1 ð44Þ

So we can conclude that Eqs. (27), (33) and (42) are only

suitable for long shells that satisfying Eq. (44). For the

shells with short length that makes the parameter Z less

than 1, the minimum value of thermal parameter U
should be determined by taking m = 1, n = 0 in Eq.

(22). In these cases, we have

Umin ¼
p2ðE1E3 � E2

2Þ
E1l

2ð1� m2Þ
þ E1l

2

p2R2
ð45Þ

For these short shells, the critical buckling temperature

difference should be determined by the following three

equations with uniform, linear and nonlinear tempera-

ture loading cases

T 0
cr ¼

p2ðE1E3 � E2
2Þ

E1Pl
2ð1� m2Þ

þ E1l
2

p2R2P

T 1
cr ¼

1

P � X
p2ðE1E3 � E2

2Þ
E1l

2ð1� m2Þ
þ E1l

2

p2R2
� PTm

� �

T 2
cr ¼

1

P � H
p2ðE1E3 � E2

2Þ
E2
1ð1� m2Þ

þ E1l
2

p2R2
� PTm

� �
ð46Þ
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Fig. 3. Critical buckling temperature rise of a functionally graded

cylindrical shell vs h/R (k = 1).
5. Numerical results and discussion

To illustrate the proposed method, a ceramic-metal

functionally graded cylindrical shell is considered. The

combination of materials consists of aluminum and alu-

mina. The coefficients of Yong�s modulus, conductivity,
and thermal expansion for alumina are Ec = 380GPa,

Kc = 10.4W/mK, ac = 7.4 · 10�6 (1/�C), and for alumi-
num are Em = 70GPa, Km = 204W/mK, am = 23 · 10�6

(1/�C), respectively. Poisson�s ratio is chosen as m = 0.3.

Firstly, The critical buckling temperature or temper-

ature differences Tcr with respect to the relative thickness

h/R are calculated for functionally graded shells with

different volume fraction exponent under uniform tem-
perature rise, linear and nonlinear temperature distribu-

tion across the thickness and are plotted in Figs. 2 and 3.

These two figures show that the critical buckling temper-

ature or temperature difference Tcr increases linearly as

the relative thickness h/R increases, whatever the gradi-

ent index k is. It is seen from Fig. 2 that the values of

critical buckling temperature difference for homogene-

ous shells (k = 0) calculated with linear or nonlinear
temperature distribution assumption are identical as ex-

pected. Actually, as the temperature changes differently

at inner and outer surface of a homogeneous cylindrical

shell, the temperature distribution must be linear across

the thickness for thin shells. From Fig. 3 it is found that
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for a functionally graded cylindrical shell with k = 1, the

values of the buckling temperature difference computed

with linear temperature distribution assumption across

the thickness are higher than those computed by nonlin-

ear temperature distribution assumption. It is also found

that the thicker the shell, the larger the difference be-
tween the buckling temperature of linear and nonlinear

temperature distributions will be.

Figs. 4 and 5 demonstrate the variation trends of

critical buckling temperature for cylinders with different

material gradient indexes vs the aspect ratio R/l of the

shell. It is obvious that as R/l increases from 1 to 8,

the critical buckling temperature reduces rapidly

whether for k = 0.5 or for k = 1. However, when R/l is
greater than 8, the critical buckling temperature changes

very slowly. This means that as the shell is short

enough, the critical buckling temperature will remain a

constant.
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Fig. 4. Critical buckling temperature rise of a functionally graded

cylindrical shell vs R/l (k = 0.5).
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Fig. 5. Critical buckling temperature rise of a functionally graded

cylindrical shell vs R/l (k = 1.0).
Fig. 6 shows the buckling temperature vs the material

gradient exponent k for a shell with h = 0.01, l = R = 1.

We can see that the critical buckling temperature for a

homogeneous ceramic cylinder with k = 0 is consider-

ably higher than those for the functionally graded

cylinders with k P 0. It is evident that the buckling

temperature decreases as the material volume fraction
exponent k increases monotonically. As the gradient

index k changes from 0 to 1, the critical buckling tem-

perature decreases significantly. When k changes from

1 to 2, it reduces very slowly, and as k becomes larger

than 2, it will be a constant practically. It is also found

that for a FGM cylinder with small gradient index k, the

difference between the buckling temperature of linear

and nonlinear temperature distributions is very small.
In order to ascertain the present method, comparison

studies are carried out for the buckling temperature dif-

ference with those obtained by Shahsiah and Eslami [22]

using the improved Donnell shell theory. A long shell

with l/R = 10 is considered. The shell is made of steel

and alumina with material properties Ec = 380GPa,

Kc = 10.4W/mK, ac = 7.4 · 10�6 (1/�C), Em = 200GPa,

Km = 204W/mK, am = 11.7 · 10�6 (1/�C), m = 0.3. The
inner surface of the shell is made of full metal. It should

be noted that this shell is not in accordance with the pre-

sent model, of which the inner surface is full ceramic. So,

for convenience of comparison, we assume Em = 380G-

Pa, Km = 10.4W/mK, Ec = 200GPa, Kc = 204W/mK,

am = 7.4 · 10�6 (1/�C), ac = 11.7 · 10�6 (1/�C), m = 0.3

in the computation. The gradient index k is taken as 1.

Figs. 7 and 8 plot the critical temperature curves for uni-
form temperature rise and linear temperature change,

respectively. It is evident that the present results are in

good agreement with those of Shahsiah, for both the

case of uniform temperature rise and the linear temper-

ature change. It is also found that the present results are
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linear with respect to the relative thickness ratio h/R.
However, Shahsiah�s results are not linear. From Eqs.

(27), (33), (42) and (46), we know that the critical tem-

perature change is linear with respect to h/R for long

shells; however, it is not linear for short shells. One

can easily find that all the present results are slightly

higher than those available in Ref. [22] for very thin

cylindrical shells.
6. Conclusions

Circular cylindrical shells are widely used in struc-

tural design problems. When such a member is subjected

to a thermal environment, its thermal buckling capacity

is important in the design stage. For a design engineer,

the closed form solutions for the buckling temperature
of such a member is essential because the design may

be quickly checked. In the present paper, Equilibrium

and stability equations for a simply supported thin

cylindrical shell made of functionally graded materials

under thermal loads are obtained using the classical shell

theory, with the assumption of power law composition

for the constituent materials. Then the buckling analysis
of functionally graded cylindrical shells under three

types of thermal loadings is presented. Closed form solu-

tions for the critical buckling temperature differences of

shells are presented. Based on the numerical results, the

following conclusions are reached:

(1) The critical buckling temperature Tcr for function-

ally graded cylindrical shells are generally lower
than the corresponding values for homogeneous

shells. It is very important to check the strength of

the functionally graded plate due to thermal buck-

ling, although it has many advantages as a heat

resistant material.

(2) The critical buckling temperature difference Tcr for a

functionally graded shell is increased linearly when

the thickness to radius ratio increases.
(3) The critical buckling temperature difference Tcr for a

functionally graded shell decreased by increasing the

power law index k.

(4) The critical buckling temperature difference Tcr for a

functionally graded shell decreased by increasing the

radius to span ratio R/l.
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